
Introduction to the Graph-Oriented
Programming Paradigm

Olivier Rey1[0000−0003−4462−3712]

GraphApps
rey.olivier@gmail.com – orey.github.io/papers

Abstract. Graph-oriented programming is a new programming paradigm
that defines a graph-oriented way to build enterprise software, using di-
rected attributed graph databases on the backend side.
Graph-oriented programming is inspired by object-oriented program-
ming, functional programming, design by contract, rule-based program-
ming and semantic web. However, it proposes a consistent approach and
enables to build enterprise software that does not generate technical debt.
Its use is particularly adapted for enterprise software that must man-
age high complexity of data structures, evolving regulations and/or high
numbers of business rules.
In this article, we present a first high level overview of the paradigm and
how this new programming model can solve the two core issues of the
technical debt, structural and temporal couplings.

Keywords: graph · design · software architecture · software engineering
· programming.

1 Maintenance and Evolutions in Enterprise Software

The way the software industry currently builds the enterprise software generates
a lot of “couplings”: inside the code, inside the data and between the code and
the data. In this section, we propose to show that those couplings are intrinsically
attached to the way the software industry is building software and not to the
semantics of the business itself. The paradigm we will study is object-oriented
programming and relational database persistence.

1.1 Structural Couplings in Enterprise Applications

In order to represent what we intend by couplings, we define three levels of
thinking: the semantic level, often used in the functional analysis step [8], the
code level, represented by UML diagrams, and the database level.

In Fig. 1-A, we focus on the case where A has a (0..1) relationship with B.
We can note the semantic concepts A and B and this dependency as A → B.
At the code level, the Class A is having an attribute myB of type Class B.
Generally a method of Class A, methodA1, will invoke on myB a method of Class
B, here methodB1. In this kind of simple aggregation, Class A owns two kinds

https://orey.github.io/papers/

2 O. Rey

Fig. 1. Couplings in the (0..1) and in the (0..n) relationships

of knowledge about Class B: how to navigate from an instance of Class A to
and instance of Class B (topology knowledge), and the prototype of methodB1.
Inside the database, this coupling will be in the same direction as in the code:
the Table A will contain a foreign key to Table B. Both in the code and in the
database, we have the relationship included inside A. We will name Cc the code
coupling, and Cd the database coupling.

The overall couplings in terms of code and database can be written the
following way: A(Cc,Cd) → B.

In Fig. 1-B, we are analyzing the (0..n) relationship, that we will note
A ⇒ B. At the code level, myB, attribute of Class A, will be a list or array of
some sort of instances of Class B. At the database level, Table B will have a
foreign key on Table A. This leads to: A(Cc) ↔ B(Cd)

1.

Enterprise software manipulating dozens to hundreds of business concepts,
each relationship between them generating couplings, they are very hard to mod-
ify and evolve, this from the very beginning of their construction. Each modifi-
cation of the semantic model, for instance going from A→ B to A→ C → B, or
from A ⇒ B to A ⇒ C → B requires a lot of software tasks that are not related
to the semantics of the business but more to the way the software is built.

The structural couplings in enterprise software are a big part of the technical
debt. The technical debt [3,10,6] is generally defined in terms of costs: it is the

1 We are studying here the two simplest cases. In real life software, we can have more
complex class to table relationships, one class being serialized in several tables or
several classes in the same table. But, in terms of cardinality, we end up creating
the same couplings.

Introduction to the Graph-Oriented Programming Paradigm 3

difference of costs between the cost of the implementation of a software module
Y, developed alone, and the costs of the same module Y developed in the context
of an evolution of an existing system X. This enables to compare the function
point [14] cost in both situation.

We can say that our OOP/RDBMS approach of the semantic concepts and
relationships implementation is not optimal, because it adds technical couplings
to the business semantics.

1.2 Temporal Couplings in Enterprise Software

Many changes in the applications come from changes in requirements, regulation
or laws. Those changes are, most often, time-based changes. In a lot of enterprise
software, many structural changes are time-dated and contextualize business
rules with time. In most cases, old data must be governed by old business rules
and new data (possibly with new structures) by new business rules.

We show in Fig. 2 a sample of the impact of a regulatory change in a software,
which version is going from Vn to Vn+1 between Tn and Tn+1 (semantic view).
We will consider the modification of P2 and P3 programs that are respectively
embedding business rules BR2 and BR3 (analytic view). We will also suppose that
the data in Vn are stored in data structures in version Vk.

For the evolution from Vn to Vn+1, we will perform the following tasks:

– The database will be updated from version Vk to version Vk+1;
– The business rules will be upgraded from version M to M+1 and L to L+1;
– We will test if the new business rules BR2 M+1 and BR3 L+1 correctly apply

to newly created data in version Vn+1 stored in the version Vk+1 of the data
structures;

– We will test that the old business rules BR2 M and BR3 L still apply to old
data in version Vn recently migrated to new data structures Vk+1 (non-
regression testing).

This evolution creates what we can call a “temporal coupling” (in red in the
analytic view): we attach data version Vn to data structure version Vk+1 and we
hide two versions of the same business rules in the evolutions of P2 and P3.

This very common practice comes from the fact that we want to consider as
being the same entities, objects which structure evolves with time. Indeed the
real need for evolution is that version M+1 of BR2 is managing data version Vn+1

on data structures in version Vk+1 and the same for BR3. Concerning the past
data, it depends if the business rules that apply on those data are limited to
the past or not. Most often, in enterprise software, past data do not need to be
migrated because the business rules that apply to them are also time-dependent.

Actually, considering our ways of storing information in RDBMS, it is not
easy to version the storage structure2. So, when a new requirement implies an
evolution of the storage structure, this storage has to become the new storage for

2 In some very big accounting systems, we can find different structures for the same
entities depending on the time.

4 O. Rey

all data of the same kind : old ones, that potentially will never evolve anymore
and do not need the structural modification, and new ones that require the
structure modification for the new business rules to apply. And, as long as all
data (old ones and new ones) are located inside the same table, it is quite normal
to have only one version of program to manage them, whatever their age. The
result is after dozens of modifications, the enterprise software contains many
versions of business rules in the same programs that apply to a single version
of data structures hiding many versions of data. The technical debt is huge in
those cases.

Fig. 2. Evolution management in enterprise software

Conceptually, this phenomenon introduces the notion of domain of data for
a business rule, notion on which we will come back in section 3.2. In fact, in
the current software industry databases and programming languages, we have
almost no time-based constructs, nor any timelining software concepts and best
practices for software engineering.

1.3 Addressing the Technical Debt

After the initial delivery, the enterprise software scope changes to accommodate
new requirements. Depending on the location of the modifications in the soft-

Introduction to the Graph-Oriented Programming Paradigm 5

ware, the evolution can be from simple to very hard to implement. For instance,
an evolution of the software core system, after some years, will be extremely
difficult to do, the impacts being so huge that the cost of such a modification
could become comparable with a full redesign and rewriting.

For decades, the software industry found work-arounds to address the tech-
nical debt problem, without really questioning the nature of the technical debt
itself.

The object-oriented design patterns [11], for instance, can be seen as a set
of empiric recipes proposing, amongst other objectives, to enhance application
extensibility. In most IT projects however, the capability of software engineers to
properly anticipate, at design time, the directions for software evolutions is quite
low, with or without design patterns. The reason is simple: the object-oriented
design is a methodology that aims at creating the best design (or the less-worst)
considering a set of use cases (the scope). If the scope changes, the new use cases
can have a deep impact on the original design. Design patterns are propositions
to ease future maintenance and software extensibility. But, if they can work in
some cases, most of the time, the software evolves in directions that were not
anticipated by the original designers3.

Software architecture [2,1,7] is at the heart of a very large literature and can
be considered also a way to address the technical debt. By defining cautiously the
architecture of a software, software architects can limit the impact of change, for
instance a database change or a web service signature evolution. This discipline is
a set of rules to identify big blocks inside the application and link them together.
Those methods help to reduce some of the coupling that are more related to
software component dependencies and separation of concerns. But, when the
core business model needs an evolution, several layers and components, plus the
database, still need to be updated.

Refactoring methods [9] are often used when the software must evolve to
integrate new requirements, or in the case of code stabilization. Generally a
refactoring project will have the 4 following parts: a redesign of at least one
part of the software; structural changes at the database level; data migration
(from their original structure to the new one); software non-regression testing.
Depending on the complexity and the scope of the changes, refactoring projects
are generally risky and costly. The refactoring methods are always analyzed by
the software industry in comparison with partial or full rewriting projects, that
are also very costly and very risky.

Despite all those efforts to minimize the technical debt in enterprise software,
during the construction or the maintenance phases, the software industry never
solved the technical debt problem. Today, the majority of software engineers
work in software maintenance and a huge portion of the IT budgets are spent in
overcoming the technical debt.

3 We can also note that misused design patterns are increasing the technical debt.

6 O. Rey

2 Introduction to Graph-Oriented Programming

We propose, in this section, to examine the basic structure of information in the
graph-oriented programming paradigm, first through modeling concepts then
through code requirements.

2.1 Node Types and Relationship Types

Concept types will not be represented anymore by classes, as the object-oriented
design, but by node types (yellow circles). Relationships will not be managed
anymore by attributes included in the container class but by a specific construct:
a relationship type (blue parallelogram). Relationship types have directions and
they cannot exist with a source node and a target node. Node and relationship
types can have attributes (see Fig. 3-A). The instantiation of those types creates
a graph of nodes connected by relationships (attributed directed graph). We will
note A− [R]→ B a synthesis of Fig. 3-A.

Fig. 3. UML versus graph-oriented modeling

Fig. 3-C is an attempt of translation of the UML model of Fig. 3-B in a
graph model. In order to define relationship types, we were bound to name them
and so to introduce new semantics, as we can do in semantic modeling [15,5]:
CONTAINS, IS A, POINTS TO) are new relationship types that we did not have
in UML. Because the object-oriented programming languages are working in
a certain way, UML considers aggregation, composition and extension as being
structural relationships, because they structure the code it self. In graph-oriented
modeling, we have no distinction of the kind: relationship types can be structural
in their semantics, i.e. relatively to their meaning. However, there is no necessity
to tag relationship types as being structural or not.

Naming relationship types pushes us to answer to new questions. Let’s take
the sample of a Class Car aggregating a Class Wheel and a Class Cocktail

Introduction to the Graph-Oriented Programming Paradigm 7

aggregating a Class OrangeJuice. We have several ways of modeling in a se-
mantic/graph way. We could mimic UML structural generic aggregation rela-
tionship writing Car − [contains] → Wheel and Cocktail − [Contains] →
OrangeJuice. But we could also propose: Car − [hasPart] → Wheel and
Cocktail − [hasIngredient] → OrangeJuice. This is a quite common design
topic in the semantic web world [5]. The fact of having two relationship types
can enable the software designer to think about having different business rules
attached to the semantics of those relationships: for instance, the [hasPart] re-
lationship can be deleted and the Wheel can have its own life cycle apart from
the Car, whereas the [hasIngredient] relationship could not be removed once
an instance of Cocktail was built.

Specialization UML relationship will also be managed by relationship types,
which can, as in the semantic web be used at several levels. For instance, let
us consider a Class Animal and a Class Dog specializing it. We can write
in a graph-oriented design approach: Dog − [isA] → Animal. But we can
generalize this specialization mechanism to other cases such as: DougsDog −
[instanceOf] → Dog, this being in the same model, Model − [governedBy] →
Metamodel.

All that to say that in a graph-oriented design approach, we can have most
of the same modeling issues that we find in RDF/RDFS. The main difference
between this modeling approach proposition and the semantic web is that a
relationship type cannot be considered as a node type, whereas in the semantic
web, triples can have as a subject, a predicate of another triple.

Expressing aggregation, composition and specialization with relationship types
opens a large number of design possibilities that we do not have in the object-
oriented programming world. For instance, we can associate instances to a node
that will represent their type, or associate a model with nodes that are repre-
senting its metamodel. The consequence is that it becomes easy, in the same
model, to manipulate multiple levels of abstractions.

2.2 About Constraints on Relationship Types

We will have sometimes the need to put constraints on the source and/or target
node types that are meaningful for a particular relationship type. In case the
relationship type accepts all types or as its source or as its target, we will use
the convention ∗ANY TY PE∗ to designate this freedom. This is equivalent to
defining the domain and range of a predicate in RDFS. For a relationship type
R, we could write in RDFS R rdfs:domain *ANY TYPE* and/or R rdfs:range

ANY TYPE.
The cardinality constraints are also important to take into consideration.

As the relationship types are outside the node types, nothing prevents an in-
stance of node A, A1, to have many instances of the same relationship type R,
R1,R2,...,Rn, to the same instance of B, B1. R should be able to come with a
cardinality oriented constraint like we have in UML.

The crucial fact to notice about relationship types constraints, on a software
engineering point of view, is what entity is responsible to check and enforce them.

8 O. Rey

In object-oriented programming, the class managing the relationship masters
the source or target type (type of this) and is able to control the cardinality (by
defining a fixed-sized array or list as its attribute). In graph-oriented design, nor
the node type, nor the relationship type can manage the constraints. It is the
role of graph transformations (cf. section 3).

2.3 Introducing the Domain Concept

Node and relationship types can be grouped by semantic space. We propose
to name those spaces domains, because in the software industry, the notion of
business domain is widely used [7] to represent business domains. During the
graph-oriented modeling phase, the idea will be to analyze the business and to
group node and relationship types by domains. We can imagine a lot of kinds of
domains: business, technical, utility, metamodel, etc.

Fig. 4. Domain concept illustration and inter-domain relationships

The Fig. 4 shows a multi-domain approach through a sample from the aerospace
maintenance. Some relationship types can be bridges or inter-domain relation-
ship types (partially represented with a double arrow in Fig. 4). This point is very
important because this inter-domain connectivity is one of the crucial sources of
software extensibility in graph-oriented programming.

2.4 About Graph-Oriented Modeling

With the simple rules that we have defined, it is possible to model every business
domain that is the core of enterprise software. By the use of domains, it is also
simple to structure the models in parts and to identify inter-domain relation-
ships, which corresponds to the idea of software module. If we take back the
notion of section 1.1, the semantic dependencies A → B and A ⇒ B are trans-
lated in design by A− [R]→ B, A and B being node types and R a relationship
type. Our design model does not alter the concepts A and B and does not add
coupling to the semantic representation once in the design phase.

Introduction to the Graph-Oriented Programming Paradigm 9

This is a major step ahead, especially if we consider that this modeling is
compatible with the way the attributed directed graph databases of the software
industry are built. Indeed, in data also, the translation of the semantic depen-
dencies will still be A− [R]→ B. In a way, this evolution in the design approach,
compared to object-oriented design, can be considered as optimal compared to
the semantic dependencies we have to model.

This means that the design process can become much nearer from the way
the business people are describing their business, in the context of enterprise
software. If they are able to draw the various entities and their relationship, the
modeling should be easily done and shared with users. We also saw that we could
model instances in that way.

2.5 Code Representation of Graph Concepts

In the previous sections, we saw basic modeling entities: node and relationship
types. We have to clarify in what way those entities are represented inside the
code itself. The representation of node types and node relationships inside the
code depends on the programming language that we use. We can define quite
distinct representations of those entities depending on the fact that we are in an
object-oriented language or a functional language. However, we think the spirit
of graph-oriented programming can be quite the same in all sorts of programming
languages. For sure, as of now, there is no graph-oriented programming language
in the market.

In the case of object-oriented languages, for sure, the native aggregation-
composition patterns should not be used, because they create couplings (cf. part
1.1). The use of specialization is trickier: it should be used carefully in an idea of
reusability without coupling generation4. For functional languages, the problem
is the same: the representation of a node cannot contain pointers to other nodes,
or we have created couplings.

We can define the minimum set of requirements that we need to ensure the
proper working of a graph-oriented set of programs (see table 1).

With the requirements described in table 1, we can create nodes and rela-
tionships5, set a relationship to point to known nodes (source and destination).
In order to manipulate the graph from code outside of the various graph ele-
ments, we need a way to represent the graph as an opaque structure that will
be accessible through a graph manipulation API6. We can propose a minimum
list of requirements for the graph manipulation API (see table 2).

In terms of programming,each individual node and relationship is manipu-
lated alone, while manipulations that require more than one element are per-
formed in the graph structure itself through the graph manipulation API. This
way of proceeding has many advantages because there is no temptation to tightly

4 Note that some graph databases are proposing already inheritance of node types and
inheritance of relationship types.

5 By nodes and relationships, we mean node and relationship type instances.
6 Application programming interface.

10 O. Rey

Requirement Sample in OO language Sample in functional
language

Programmatic
representation
of node type

Class List/struct with typed members

Programmatic
representation
of relationship type

Class with a source node ID at-
tribute and a target node ID at-
tribute

List/struct with typed members
with two members for the source
and target node IDs

Programmatic
representation
of graph

There must be a class Graph en-
abling graph manipulation.

There must be a structure rep-
resenting the graph and enabling
graph manipulation.

Graph manipulation
API

Methods on the Graph class Functions acting on the graph
structure

Table 1. Minimum set of requirements for a graph-oriented implementation

Category Requirement Description

01 Basic Create graph from select query
02 Basic Get graph root node (when applicable)
03 Basic Add nodes and relationships inside the graph
04 Basic Delete a node or a relationship inside the graph
05 Basic Modify a node or a relationship inside the graph
06 Basic Get nodes and relationships from the graph to access them in a object-oriented or

functional way
07 Advanced Assert a topology condition on the graph (returning true or false)
08 Advanced Search for nodes and relationships with some criteria (such as per attribute value)
09 Advanced Merge two different graphs
10 Advanced Persist the graph
11 Advanced Match a pattern in the graph
12 Advanced Perform some other complex operations on graphs (for instance, for two graphs

G1 and G2, create the graph G3 = G1 ∩G2)

Table 2. Minimum set of requirements for a graph manipulation API

couple things together. Actually, the way the graph is implemented internally has
no real importance on developments, which is why the programming language
is not so important in that case.

The requirements are quite common for graph libraries, except perhaps the
requirement #07 that can be use to check if the graph is in a certain state. Typ-
ically a small DSL can be of use in the API of this requirement, the development
of it requiring most probably the use of graph isomorphisms algorithms.

2.6 Software Structures Nearer From Business Concepts

In enterprise software, most software engineers have realized for a long time
that it was very useful to have an business layer that represented as accurately
as possible the business concepts [7]. In a way, the success of object-oriented
programming was to enable this new way of modeling applications. We saw in
section 1.1 that the code and database representation of the business semantics
was not optimal.

In the OOP/RDBMS paradigm, the first problem is adapting the business
objects to the database, because in the case of the 0..1 or 0..n couplings, the

Introduction to the Graph-Oriented Programming Paradigm 11

aggregation/composition must be transformed in foreign keys is not automatic.
It can be written by hand of delegated to an ORM, but the adaptation between
the code structures and the database structures must be done. In the graph-
oriented programming model, the code structures and their relationships are the
exact image of the database7. In a way, in terms of data structures, we can say
that the graph managed by the graph library is an optimal representation of the
graph in the database.

The second big concern that remains is the positioning of the business logic
on classes. All the software engineers that developed domain-driven enterprise
software have quite often a hard time positioning the methods on the right classes
in the graph of business classes. As we saw in Fig. 1, the method methodA1 must
know a part of the topology of the graph to be able to run. With a certain set
of use cases, the positioning can be solved, but when the software evolves, it is
often hard to redistribute the business logic to fit the new requirements.

The case of a change in the business semantics from A→ B to A→ C → B
is typical: the evolution of methodA1 calling methodB1 is complex to realize.
Will methodB1 keep the same scope? Must we introduce a methodC1 on Class C

calling methodB1 and called by methodA1? Will methodC1 contain some business
logic that was originally in methodA1? And we are here in a very simple case.

In the graph-oriented programmingparadigm, we can solve the business logic
positioning through the use of graph transformations.

3 Graph Transformations

The notions of graph transformation, graph grammars, graph rewriting, are
widely studied from the 70s in the domain of theoretical computer science and
mathematics8. All those works are related to directed or undirected graphs, with
ou without labels and colors. The works done around Progres and AGG [4] were
particularly inspiring.

The objective of this section is the materialize the notion of graph trans-
formation in the software itself and to use it to build enterprise software. We
will show that the graph transformation structures are near from functional pro-
gramming and that they enable to write programs that do not generate technical
debt.

3.1 Modeling Graph Transformations

We propose the following definition of the graph transformation: A graph trans-
formation is a function that takes in input a graph (or a subgraph) and gives in
output a graph (or a subgraph). In object-oriented languages, the graph trans-
formationcan be represented by a method of a (treatment) class. The output

7 Some database vendors encourage also the use of native types to have no type con-
version at all.

8 For instance [16,13] amongst other references.

12 O. Rey

graph can be the same graph modified (destructive approach also called with
side effects) or a new graph (no side effect approach).

The subgraph will be represented as a container because it contains node and
relationship types. The graph transformation turns one subgraph (INBOUND) into
another subgraph (OUTBOUND) like shown in Fig. 5)9. In a way, graph transfor-
mations are first-class citizens in the design (whereas they are not in UML).

Fig. 5. Representation of graph transformation

3.2 The Graph Transformation Code Structure

A graph transformation must take in charge three problems: check the input
subgraph topology to determine its applicability; transform the inbound sub-
graph into the outbound subgraph following business rules; analyze and solve
rewiring issues at the limit of the subgraph.

The graph transformation must primarily check the input subgraph topology
to see of the transformation is applicable. By checking the topology of the graph,
the graph transformation determines what nodes and relationships it expects to
find in the subgraph to be applicable. In case the topology is not compliant
with the expected topology, the graph transformation should declare itself as
NOT APPLICABLE.

This check of topology must: be strictly limited to the required nodes and
required relationships; not presume about other relationships that may exist for
certain nodes and that are not relevant in the context of the graph transforma-
tion that is being executed; be expressed in a graph-oriented topology language
enabling assert-like clauses.

The real graph transformation will take place after the topology check. It can
modify the existing subgraph or create a new subgraph following the business
rules of the business domain.

The challenge of the third step is to ensure that only relevant nodes and
relationships were seen by the graph transformation. When the resulting sub-
graph is a part of a bigger graph, the modification must be done locally without

9 The Henshin tool is proposing a graphical DSM to represent and control the validity
of graph transformations [18].

Introduction to the Graph-Oriented Programming Paradigm 13

damaging, by mistake, the relationships that are present but not relevant in the
context of the graph transformation that is being executed.

This is a crucial point. It means that it is as if the graph transformation
was acting on a graph view and was blind to whatever information that is not
relevant to it. For instance, in Fig. 6, h is not modifying the inbound or outbound
relationships of N. If h is correctly coded, it should not see any of those gray
relationships and nodes.

Fig. 6. Rewiring preserves unknown relationships

This is the guarantee of the infinite and easy evolution of the software: pro-
vided the graph transformation does not assume more than it strictly needs to
know, and provided the graph transformation may not apply in case of topology
mismatch, we have the foundations of an ever-evolving system with no technical
debt.

3.3 What are Graph Transformations?

The graph transformation knows about the subgraph topology and potential
nodes and relationships attributes. It can be seen as the minimal coupling unit in
an absolute way: it only sees the view when the topology conditions are matched,
acts on it without assuming more things about the “invisible” parts of the graph.
In that sense, if a business rule is encoded into a graph transformation, we can
say that the encoding of the rule is optimal.

We could see the graph transformation as a kind of method of a graph, the
graph being a complex object. Actually, in a lot of cases, the object-oriented ap-
proach is not sufficient or fully adapted to represent properly (complex) business
concepts, whereas graphs are. In terms of treatments, the graph transformations
are attached to the graph as the methods are attached to the object (through
the topology checks).

That is why graph-oriented programming can be interpreted as a natural
evolution, or a generalization, of object-oriented programming: objects became
(sub)graphs and methods became (sub)graph transformations.

14 O. Rey

3.4 Composing Graph Transformations

In current enterprise software, many programs are big and are taking in charge
a lot of cases in one single piece of code. This code embeds various knowledge
of data topology.

In graph-oriented programming, graph transformations are linked to their
topology conditions, which means that, contrary to classical programming mod-
els, there should not be, inside a graph transformation code, business rules that
apply to various topologies. In other words, graph transformations can be quite
small, attached to a particular topology pattern. This way of proceeding enables
bottom-up programming [12] for the implementation of business rules.

Composition of graph transformations are eased by their uniform interface:
subgraph in inbound and subgraph in outbound. The fact that they protect
themselves from non applicability enables their easy composition. As a mat-
ter of facts, graph transformations appear as the most reduced compose-able
units of coupling in the graph-oriented design software. They are the main kind
of enterprise software building blocks. Actually, composition makes reusability
possible.

For instance the h transformation of Fig. 6 is creating a snapshot of any
node N, Copy of N at a certain time and links it to N through an instance of
the PREVIOUS relationship. The current N is preserved, so is all the relationships
that are invisible to h. h is a reusable graph transformation that can be com-
posed before or after the application of any f graph transformation to create
respectively f ◦ h or h ◦ f.

3.5 Graph Transformation Evolution Rules

Graph transformations evolutions should follow some to avoid generating tem-
poral couplings (cf. part 1.2), the objective being to determine what we must do
in front of a change in business logic. We can propose the following rules.

If the topological applicability conditions change, then the graph transforma-
tion should most probably be forked, because this is a change in the applicability
domain. If the topological conditions do not change, it depends on data time
characteristics: if all data in the database are submitted to the new rule (and
none to the previous version), the graph transformation can be updated; if old
data still obey the previous version of the rule, the graph transformation should
most probably be forked. We must note that a change in data structure (node
and relationship typed members) must be considered a topological change.

Forking graph transformations enable to limit, as much as possible, the cre-
ation of temporal couplings, the objective being to have a code level representa-
tion of the business semantics that is not creating artificial technical couplings.
Forking graph transformations also creates a timeline-based design for the ap-
plication, where data structures and graph transformations are applicable or not
depending on the time.

This implies that some other orchestration code will exist in order to find
the proper graph transformation on two criteria: the business rule to apply plus

Introduction to the Graph-Oriented Programming Paradigm 15

the time of the application. This way of building applications enable to create
simply very complex applications in which both the data and the business rules
can evolve with time. We could call this kind of software “timelined enterprise
software”.

4 Conclusion

We provided, in this article, a very first overview of the graph-oriented pro-
gramming paradigm. We believe this paradigm enables to solve structural and
temporal couplings issues. With the concepts that we have defined, we presented
the building blocks to create a new generation of enterprise software that would
not generate technical debt and in which design, programming and data storage
would be the nearest ever from the business semantics.

Patterns and prototypes are being developed currently in this paradigm, in
particular in the domain of aerospace maintenance, business domain where the
graph-oriented programming approach can help tackling the complexity.

References

1. D. Alur. Core J2EE Patterns. Prentice-Hall, 2nd edition, 2003.
2. F. Buschmann. POSA Volume 1 - A System of Patterns. Wiley, 1996.
3. W. Cunningham. The wycash portfolio management system, 1992. c2.com.
4. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg. Handbook of Graph Gram-

mars and Computing by Graph Transformation, volume 2. World Scientific, 1999.
5. D. Allemang et al. Semantic Web for the Working Ontologist. Elsevier, 2008.
6. N. Brown et al. Managing technical debt in software-reliant systems. In Proceedings

of the FSE/SDP workshop on Future of software engineering research, 2010.
7. E. Evans. Domain-Driven Design. Addison-Wesley, 2003.
8. M. Fowler. Analysis Patterns, Reusable Object Models. Addison-Wesley, 1996.
9. M. Fowler. Refactoring. Addison-Wesley, 1999.
10. M. Fowler. Technical debt, 2003. martinfowler.com.
11. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements Of

Reusable Object Oriented Software. Addison-Wesley, 1994.
12. P. Graham. ANSI Common Lisp. Prentice Hall, 1996.
13. U. Prange H. Ehrig, K. Ehrig and G. Taentzer. Fundamentals of algebraic graph

transformation. Springer, 2010.
14. D. Longstreet. Function Points Analysis, 2008. softwaremetrics.com.
15. R. King R. Hull. Semantic database modeling. 1997.
16. G. Rozenberg. Handbook of Graph Grammars and Computing by Graph Transfor-

mation, Foundations, volume 1. World Scientific, 1997.
17. David Sankel. Building software capital, 2016. YouTube CppCon2016.
18. T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer. Henshin: advanced

concepts and tools for in-place EMF model transformations. In International Con-
ference on Model Driven Engineering Languages and Systems. Springer, 2010.

http://c2.com/doc/oopsla92.html
http://martinfowler.com/bliki/TechnicalDebt.html
http://www.softwaremetrics.com/Function%20Point%20Training%20Booklet%20New.pdf
https://www.youtube.com/watch?v=ta3S8CRN2TM

	Introduction to the Graph-Oriented Programming Paradigm

