Introduction to Graph-Oriented Programming

Olivier Reyl [0000—0003—4462—3712]

GraphApps, France
rey.olivier@gmail.com — orey.github.io/papers

Abstract. Graph-oriented programming is a new programming para-
digm that defines a graph-oriented way to build enterprise software, us-
ing directed attributed graph databases as backend. Graph-oriented pro-
gramming is inspired by object-oriented programming, functional pro-
gramming, design by contract, rule-based programming and the semantic
web. It integrates all those programming paradigms consistently. Graph-
oriented programming enables software developers to build enterprise
software that does not generate technical debt. Its use is particularly
adapted to enterprise software managing very complex data structures,
evolving regulations and/or high numbers of business rules.

Couplings in enterprise software

The way the software industry currently builds enterprise software generates
a lot of “structural and temporal couplings”. Structural coupling occurs when
software and, in particular, data structures, are implemented such that artificial
dependencies are generated. A dependency is artificial if it occurs in the imple-
mentation but not in the underlying semantic concepts. Temporal couplings are
artificial dependencies generated by holding several versions of business rules in
the same program, those rules being applicable to data that are stored in the
last version of the data structures.

Those couplings are at the very core of what is commonly called “technical
debt”. This debt generates over-costs each time a software evolves. Generally, the
requirements change, the software is partially redesigned to accommodate the
modification, the data structures evolve, the existing data must be migrated, and
all programs must be non-regressed. In order to implement a small modification
in an enterprise software, a change in regulation for instance, overcoming the
technical debt may represent up to 90-95% of the total workload [5,6].

The software industry has, for a long time, identified the costs associated
to technical debts, and in particular those costs seem to grow exponentially
with time [5]. That means that the productivity of any maintenance team of
fixed size will constantly decrease throughout the evolution process. In order to
address this core issue of enterprise software, a lot of engineering-oriented work-
arounds can be found: design patterns that are supposed to enhance software
extensibility [1], software architecture practices that define modules and layers
inside an enterprise software [4,2], or best practices for software refactoring to
reduce the costs of the refactoring phase itself [3]. However, every software vendor
knows that the core problem of the technical debt has not been solved.


https://orey.github.io/papers/

2 O. Rey

Graph-oriented programming

Graph-oriented programming is meant as an alternative programming paradigm
not collecting technical debts. This paradigm is based on three concepts: (1)
Using directed attributed graph databases to store the business entities without
storing their relationships in the entities themselves, i.e. there are no foreign
keys; (2) Designing programs so that the knowledge about relationships between
entities (business nodes) is captured in functional code located “outside” of the
nodes, encapsulated in graph transformation rules; (3) Using best practices in
graph transformation design to guarantee a minimal or even no generation of
technical debt. This programming paradigm can be applied using an object-
oriented or functional programming language.

The expected advantages of using graph-oriented programming are multiple:
reusability of software is increased due to less software dependencies; multiple
views of the same data can be implemented in the same application; multiple
versions of data structures and business rules can cohabit, meaning that the
software and the data can be timelined; software maintenance can be done by
adding new software rather than by modifying existing software.

At last, graph-oriented programming enables to build a different kind of
enterprise software that proposes, through the use of a graph-oriented navigation,
a new user experience, closer to our mental way of representing things.

The approach taken at GraphApps

At GraphApps, we developed a graph-oriented designer in Eclipse whose pur-
pose is to model node and relationship types, as they occur in business appli-
cations, and to group them in semantic domains. Code generators, coupled to
the designer, generate parameterized web pages proposing a default view of de-
fined types of business entities. For each semantic domain, an independent jar
file is generated. In addition, we developed a graph-oriented web framework,
which loads the jar files and enables us to integrate them in the graphical web
framework. All domains can be integrated without introducing any new code de-
pendency. Each domain may include custom code, in order to implement graph
transformations, web page modifications, or new pages. Moreover, the frame-
work proposes reusable components that offer generic reusable mechanisms such
as business node classification (every business node can be referenced in a tree
of shared folders), business node timelines, navigation history, personalized links
between business nodes, or alternate navigation.

Those tools support a quick prototyping of large and complex applications,
the implementation of time-based business rules, and the cooperative work of
several teams collaborating to the same core model. The way the code is or-
ganized enables us to modify the behavior of the core system, without having
to modify existing code, migrating data, or performing non-regressing testing.
We have used this set of tools for many business prototypes and we are using
it currently to build a complete innovative aerospace maintenance information
system (composed by many semantic domains) from scratch.



Introduction to Graph-Oriented Programming 3

Conclusion

The paradigm of graph-oriented programming enables us to build a new gener-
ation of enterprise software that will be much easier to maintain and that can
address the high complexity of business entity structures and their life cycles,
as well as time-sensitive business rules. This paradigm may be used to rewrite a
huge number of enterprise software in the coming decades in order to decrease
drastically the maintenance costs, to enhance the capability of personalization
of the software and to create new user experiences by proposing more intuitive
ways to navigate within the software.

References

1. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements Of

Reusable Object Oriented Software. Addison-Wesley, 1994.

F. Buschmann. POSA Volume 1 - A System of Patterns. Wiley, 1996.

M. Fowler. Refactoring. Addison-Wesley, 1999.

D. Alur. Core J2EE Patterns. Prentice-Hall, 2nd edition, 2003.

A. Nugroho, V. Joost, and K. Tobias. An empirical model of technical debt and

interest. Proceedings of the 2nd Workshop on Managing Technical Debt. ACM,

2011.

6. Z. Li,P. Avgeriou,and P. Liang. A systematic mapping study on technical debt and
its management. Journal of Systems and Software, 101, 193-220. 2015

oUW



	Introduction to Graph-Oriented Programming

