
The Graph-Oriented Programming Paradigm

Olivier Rey
Copyright ©2016 Olivier Rey

olivier.rey@mines-paris.org

October 26 2016
Preliminary Version

Abstract

Graph-oriented programming is a new programming paradigm that de-
fines a graph-oriented way to build enterprise software, using directed
attributed graph databases on the backend side.

This programming paradigm is cumulating the benefits of sev-
eral other programming paradigms: object-orientation, functional pro-
gramming, design by contract, rule-based programming. However, it
is consistent in itself and does not depend on any other programming
paradigms. It is also simpler and more intuitive than the other pro-
gramming paradigms. Moreover, it shows astonishing properties in
terms of software evolution and extensibility.

This programming paradigm enables to develop long lasting busi-
ness applications that do not generate any technical debt.

It provides a radically different answer to the maintenance and evo-
lutions phases compared to other programming paradigms. Its use is
particularly adapted for applications that must manage high complex-
ity, evolving regulations and/or high numbers of business rules.

With graph-oriented programming, software can evolve structurally
without having to redesign it, to migrate the data or to perform non
regression testing on it.

In this article, we will explain how graph-oriented programming
paradigm can change the way the software industry thinks about soft-
ware and we will uncover some of the many advantages of the graph-
oriented programming paradigm.

1 Introduction

1.1 A New Programming Paradigm

The exercise of introducing a new programming paradigm
is difficult. Indeed, in order to be able to explain the
new paradigm, we have to compare it to other programming
paradigms.

We will suppose, in this article, that the reader has no-
tions of object-oriented programming1 [19], functional pro-
gramming [5, 12, 18, 2, 26], design by contract [19], rule-based
programming[15] and semantic design [33].

We also suppose that the reader has a basic knowledge of
attributed graph databases [20] and a good understanding of
basic relational databases mechanisms.

1Abbreviated OOP in the article.

1.2 Common Use Cases for Attributed Directed
Graph Databases

At the time this article is being written, attributed directed
graph databases are mostly used:

• In Internet social applications,

• For Big Data purposes,

• For recommendation algorithms in retail or assimilated
businesses,

• In fraud detection based on pattern matching,

• In some other more restricted areas such as reference data
management, identity management or network modeling.

This article will not speak about those common graph
database use cases, and we will direct the reader to the mas-
sive documentation available on the Internet on those topics.

1.3 What is Enterprise Software?
In this article, we will only focus on enterprise software2. This
does not mean that the graph-oriented programming paradigm
may not be applicable to other fields of software engineering,
but we want to restrict our study to this particular domain.

For us, the enterprise applications have the following char-
acteristics:

1. They manipulate business concepts and they implement
part of or complete business processes;

2. They embed business rules, most of the time inside the
code;

3. They are submitted to various administrative constraints,
standards, laws or regulations;

4. They are bound to take into account regulatory changes,
that may be frequent;

5. They are used by several people inside the same company,
group or set of companies;

2Also called enterprise business applications, enterprise applications or
just business applications.

1

The Graph-Oriented Programming Paradigm O. Rey

6. They use at least one database (currently mostly relational
databases);

7. They are generally proposing interactive services through
GUI3 (which is implemented by a transactional mode on
the server side) and quite often batch services.

We will not consider in this article the production environ-
ment for those applications (in house, hosted, Cloud-based,
etc.).

In this article, ERP-like4 software is also considered as being
enterprise software.

2 Maintenance and Evolutions in En-
terprise Software

In this part, we will come back on well-known current issues
faced by the professional software engineering during the main-
tenance and evolution phases. This will help us understand why
graph-oriented programming is so promising for the coming
years in the field of enterprise software.

2.1 Coupling in Enterprise Applications
Enterprise applications generate a lot of coupling.

As we will see, those couplings are fundamentally attached
to the way the software industry is building software. We will
show how our current technologies cannot but generate cou-
pling from the very beginning of software construction.

As we saw, an enterprise software is dealing with business
concepts and relationships between those business concepts,
and has to persist both the concepts and the relationships in-
side a database.

In this article, we will just analyze the coupling generated by
the current dominant programming model: the object-oriented
programming model and its persistence through a relational
database5.

2.1.1 The Case of a Simple 0..1 Aggregation

In order to represent the issue of coupling, we will propose
several diagrams in which we see the three levels of thinking
that we generally use to build enterprise software:

1. The conceptual level, also called the analysis level [9];

2. The code level, also called the software level represented
in our samples by UML design diagrams;

3. The database level, also called storage level.

In Fig. 1, we can study the coupling that we generate to rep-
resent a simple 0..1 aggregation: the class A “knows” the
class B. By “knowing”, we mean that, even if members are not

3Graphical User Interface.
4Enterprise Resource Planning.
5Analysis of older enterprise software (such as Cobol applications running

managing data in indexed sequential databases) is also very interesting but it is
not in the scope of this article.

Figure 1: Case of a simple aggregation 0..1

accessed directly, the method methodA1 will know how to
navigate from the instance of A to the instance of B through the
A member myB.

In the context of our sample, we will suppose, the
methodA1 calls the methodB1 on the myB instance (we are
taking a very simple case of encapsulation [11]). For sure, in
that case, methodA1 will know the signature of methodB1
and know how to call it.

We can note that this simple case of encapsulation implies
that A “owns” two types of knowledge on B: the knowledge
of navigating from A to B and the knowledge of methodB1
interface.

Inside the database, this coupling will be the same as in the
code. Where myB is something like a pointer to a B instance,
the relational table representing A will contain a column in
which we will find the unique identifiers (ID) of B. This is often
called foreign key6.

This case is really very simple and we see that we have gen-
erated, by construction, a coupling at the code and the database
level between respectively A and B classes and A and B tables.
In that case however, we can note that B is still autonomous:
it is referenced by A in the code and inside the database but it
does not “know” A. We have a single direction coupling: A→
B.

2.1.2 The Case of the 1..n Aggregation

The case of the 1..n aggregation is more problematic as we can
see in Fig. 2.

In terms of code, we still have a double knowledge at the
methodA1 level: the way of navigating from the instance of
A to the instances of B, and the knowledge of the methodB1
signature (same hypothesis than in section 2.1.1).

6Indeed, the real foreign key in a relational database brings some enforce-
ment rules with it, such as the non capability of referencing an ID of B if this
ID does not correspond to a real instance of B. We will just name foreign key
the global concept without willing to attach too many database features to it.

Page 2

The Graph-Oriented Programming Paradigm O. Rey

Figure 2: Case of the 0..n aggregation

But the database implementation is far worse: the table rep-
resenting B contains a column referencing A IDs, which is in-
deed a reverse dependency. Through the foreign key, the table
representing B “points” to records in A.

This is a very annoying coupling because it is both ways:
A↔ B. A knows B inside the code and the B table knows the A
table inside the database.

Actually, it seems puzzling that the software industry ac-
cepted for so long such a structural problem because, concep-
tually, B remains “pointed to” by A and not the reverse.

We can say that the technologies that we use, object-oriented
programming and relational databases in that case, structurally
generate useless and problematic couplings inside the code and
the database.

2.1.3 Large Scale Couplings

Most enterprise software have to manipulate dozens to hun-
dreds of business concepts. When each conceptual relationship
is generating a coupling between entities both at the code and at
the database level, from the very beginning of the application
design, the software engineers have to cope with lots of cou-
pling, most of them being the consequence of technology and
not the consequence of the conceptual requirements.

Those couplings will be quite hard to manage during the
maintenance evolution phases and it seems that, for a long time,
the industry has learned to live with it [23, 25, 24].

2.2 The Necessary Scope Changes

Application scope changes with time to accommodate new re-
quirements and new business practices.

We will define scope as follows: the scope of a software is
the intersection between the business semantic space and the

points of view of some users using the system to perform the
business processes the software is supposed to automate.

As we wee in Fig. 3, every unexpected evolution can have
a massive impact on the application7. The Views 1 and 2 are
showing a scope evolution that does not touch the core of the
system, while Views 3 and 4 show a core system evolution.

If we consider the Fig. 3 View 1, we can see a new require-
ment coming inside an application scope. This new require-
ment is not semantically located at the core of the application.
It creates the following impacts (View 2):

1. Addition of new software (white circle in Fig. 3);

2. Modifications in existing software (orange circles in
Fig. 3);

3. Glue between existing software and new software (light
blue circles in Fig. 3);

4. Modifications in new software due to the glue (green cir-
cles in Fig. 3).

View 4 shows the impact of a core modification. Generally,
this kind of scope evolution is so risky that every other solution
will be considered as better (especially if the software engineers
can convince the customer the new requirement can be done in
another way than through software modification).

Generally, in the maintenance and evolution phases, software
engineers feel that they are not free to make the application
evolve as it should. If most of them think the previous main-
tenance teams did a bad job, the experience makes many of
them to realize that there is no legacy application that is “well
designed” and that this statement may imply a deeper problem.

2.3 The Multiple Attempts of the Industry to
Reduce Coupling And Accommodate Scope
Changes

For decades, the enterprise software industry have tried a lot of
empiric methods to reduce coupling and accommodate scope
changes:

1. The use of software design patterns [11];

2. The development of software architecture concerns [4, 32,
30, 1, 8];

3. The development of refactoring methods [3, 10];

4. The use of ORM8 systems and generated code and/or
queries.

Instead of being real solutions, those attempts can be seen
mainly as work-arounds solving partially the maintenance and
evolution problems.

We will very briefly highlight the issues with those various
work-arounds. Every topic would deserve much more explana-
tion but we will try to stick to what we consider as being the
main points.

7For certain categories of applications, regulatory changes are the main
source of unexpected evolutions.

8Object-Relational Mapping.

Page 3

The Graph-Oriented Programming Paradigm O. Rey

Figure 3: Evolution of the scope of an application

2.3.1 Design Patterns

The object-oriented design patterns [11] can be seen as a set of
empiric recipes with three objectives:

1. Solve common design problems with common solutions;

2. Identify reusable components;

3. Try to solve the present design problems while easing the
future evolutions (application extensibility).

For the first point, the approach is near from the mathemati-
cal theorem approach: under a definite set of conditions, we can
apply a design pattern. If this set of conditions is not met, the
design pattern should not be used, and in most cases, it could be
harmful to use it because it introduces unnecessary complexity
that will be paid during the maintenance and evolution phases9.

For the third point, things are more complicated because
forecasting the “directions” the software will evolve to is a very
difficult task. In most of the projects we saw, the capability of
software engineers to properly anticipate, at design time, the
directions for software evolutions is quite low. That means
that, in the maintenance and evolution phases, redesign is of-
ten needed because of bad evolution forecasting options taken
in the past.

This should not be a surprise for the software industry: it
is very difficult for software engineers to anticipate changes in
the business; indeed, it is not their job. Software engineers
know how to make the best design with a certain scope but it
is almost impossible to design a system that will be robust to
any kind of scope change. It would be better if the software
industry could guarantee a set of technologies that support any
kind of business change easily.

The promise of design patterns was to be able to ease future
maintenance and software extensibility, often by trying to re-
duce coupling10. It is obvious that the objective was not fully
achieved.

Perhaps, this is due to the fact that some crucial books [11]
were published too soon, before the software industry had some
real experience on what it was to implement big enterprise soft-
ware with OOP/RDBMS11 technology

2.3.2 Software Architecture Concerns

Software architecture [4, 32, 30, 1, 8] is at the heart of a very
large literature. By defining cautiously the architecture of a
software, software architects can limit the impact of change,
for instance a database change or a web service signature evo-
lution. This discipline is a set of rules to identify big blocks
inside the application and link them together (in layers and in
components).

9Pattern misuse is still a great problem in the legacy code, because instead
of easing the maintenance, it makes it harder. Some companies went too far in
the pattern obsession by integrating pattern implementation in the yearly soft-
ware engineer’s objectives. This led to a lot of software troubles and massive
unnecessary overcosts.

10Through the use of interfaces or virtual classes for instance.
11Relational DataBase Management System.

Page 4

The Graph-Oriented Programming Paradigm O. Rey

Those methods help to reduce some of the coupling that are
more related to software component dependencies and separa-
tion of concerns.

But, when the core business model needs an evolution, sev-
eral layers and several components, plus the database, still need
to be updated. In terms of business code, the evolutions can be
easier because the application architecture is good, but the re-
quired redesign will have to be performed anyway.

2.3.3 Refactoring Methods

A. Refactoring Because of a New Structural Use Case
Despite all efforts invested in design, most software profes-

sional know that a day always comes when a new require-
ment requires a structural (unplanned) change in the existing
code. Because the business practices evolve, a new use case
can change the way we look at the software.

Possibly, this new use case can require:

1. A redesign of at least one part of the software;

2. Changes at the database level that will require a data mi-
gration (from their original structure to the new one);

3. Software non-regression testing.

Indeed, for every software, many choices were done during
the design phase. After some years, those choices appear as not
being able to accommodate every change easily. The software
needs refactoring.

For instance navigation choices are usually made taking into
account the main use cases of the application. At a certain
point, even the foreign keys of the database are designed in
a way to ease the chosen navigation. Those choices make al-
ternate navigations harder. In case of an evolution that would
require a reverse navigation, the impact on the existing appli-
cation (code and data) will be huge.
B. Refactoring Because of Software Fragility

Another common use case for refactoring is software insta-
bility.

When a piece of software was maintained once too many,
bugs can appear as side effects of minor modifications. The
code has become very fragile with time. It manages lots of
cases and making an evolution in it has become very risky.
When the fixed bugs in code generate more bugs, it is time for
refactoring [10].

Refactoring need is typically the direct consequence of sev-
eral problems:

a) Coupling;

b) Quick and dirty maintenance and evolutions;

c) Time;

d) Many software engineers maintaining the same code over
the years.

At a certain time, when the maintenance and evolution is
becoming too expensive, there is a cost to pay just to re-
implement the same features differently in order to reduce bugs
and problems.

Refactoring is hard, painful and dangerous because:

a) It needs to preserve the exact same functionality inside the
software;

b) It needs to enhance software maintainability (to avoid re-
spending money on that particular piece of software);

c) It needs to make the new cleaner design coexist with bad
old designs (which implies complex technical migration
and cohabitation plans);

d) It needs to maintain data integrity and semantics (when the
database is also touched by refactoring);

e) It calls for a massive non regression testing campaign to
ensure that all is right.

Sometimes, it is too expensive to refactor, especially when
software engineers used anti-patterns [3]. In those situations,
both solutions are bad: either the application is refactored, it is
dangerous and it costs a lot; or it is rewritten, it is extremely
dangerous and it costs even more.

This explains why so many legacy applications are not refac-
tored nor rewritten.
C. A Work-Around

Refactoring is painful, risky, costly, but necessary. The prob-
lem is that it is and remains a mandatory work-around. What
is conceptually problematic is that the software industry has no
proper way to realize enterprise software that would require no
refactoring one day.

2.3.4 Object To Relational Mapping

For many years now, a lot of software engineers are using
ORM systems to store objects inside relational databases. The
promise of the ORM is double:

1. Abstracting the software engineer from the relational map-
ping (through code generation);

2. Manage conceptual evolutions by regenerating easily
mapping code.

Actually, this works quite well for simple applications with
simple queries and no structural evolutions. But for most en-
terprise software, an ORM system cannot cover 100% of the
database accesses12. In that case, it becomes really problematic
to use the ORM sometimes and manual storage management
some other time13.

Indeed the productivity of ORM system uses seems good in
the development phase but it is more questionable during the
maintenance phase, especially in case of structural changes.
We could argue that the ORM system use enables to deliver
quickly by pushing hidden costs in the maintenance and evolu-
tion phases.

12By experience, we could say that at least 20 to 40% of the database ac-
cesses cannot be dealt with the ORM helpers.

13Considering that most ORM systems are doing memory cache, the use of
an ORM system in enterprise software can quickly become tricky.

Page 5

The Graph-Oriented Programming Paradigm O. Rey

We can note that there are some various philosophy in the
industry about the use of ORM systems.

Even if it is quite complex to quantify, we can see the general
tendencies in the market:

• Enterprise softwares realized in IT service mode for spe-
cific companies are generally using an open source ORM;

• Enterprise softwares realized by software companies for
multiple customers generally avoid the use of an ORM (or
are using their own product).

A part of the industry, near from the vendors, are pushing
for the use of ORM systems in domain-driven applications [8],
their main argument being productivity. Some authors even
pretend that ORM data objects can be considered as the busi-
ness objects [22], whereas in the domain-driven approach they
are only the data layer, i.e. a kind of adapter between the busi-
ness classes and the database.

Even if the idea is interesting because the question of “dis-
tance” between the concept and the code is a recurrent ques-
tion of software, as we will see in part 5.2, we believe ORM
systems can help in some limited cases, but not really for en-
terprise applications that have a real functional complexity. In
other terms, if the application needs mainly CRUD14 requests,
the ORM system is very adapted; if the application requires
more evolved data accesses (complex queries, TP15 and batch),
the ORM system use should be questioned.

ORM systems surely help to make certain evolutions inside
enterprise applications but, once more, it automates painful
code that needs to be there to manage the coupling attached
to the OOP/RDBMS technologies.

2.3.5 Conclusion

The software industry created, with time, a lot of recipes and
work-arounds to ease the maintenance and evolution phases.

But we must realize that existing code is not easy to maintain
because, from day one, we are coupling tightly things together.
Even if our design choices are relevant from the very beginning
of the project, we cannot but create tightly-coupled code and
database.

We could say that the software industry is used to create
“hard-software” instead of searching for real “soft-software”.

2.4 Time Management in Enterprise Software
2.4.1 Current Practices

Many changes in the applications come from changes in reg-
ulation or laws. Those changes are, most often, time-based
changes16.

In a lot of enterprise software, many structural changes are
time-dated and contextualize rules with time. Old data must

14Create, Retrieve, Update, Delete.
15Transactional Processing.
16For instance, in accounting systems, most migrations are done after clos-

ing, and the data migration of old data is not really possible (nor even mean-
ingful).

Figure 4: Evolution management in enterprise software

be governed by old business rules and new data (possibly with
new structures) by new business rules.

Let us consider Fig. 4.
By evolving the semantic space from V0 to V1, we had to

create a new table D and modify P2 and P3 programs.
The current development process will push us:

a) To migrate the old data (stored in version N structures) into
version N+1 structures;

b) The program evolutions will make P2 and P3 support ver-
sion N+1 of data structures.

The most common approach in the software industry is to
create a data structure that will be a super set of all versions of
data structures and to have programs managing different busi-
ness rules depending on time.

This approach generates multiple levels of coupling between
code and data. Let us consider the analytic view of Fig. 4. We
take the hypothesis that P2 and P3 implement two business
rules named respectively BR2 and BR3.

On top of the coupling we identified in part 2.1, we are gen-
erating a version-based coupling or temporal coupling:

a) The P2 and P3 programs must evolve in version (respec-
tively M+1 and L+1) and so are their business rules BR2
and BR3;

b) The data version N in structure version N is migrated to
structure version N+1; We can note that semantically the
data is still old version N data;

Page 6

The Graph-Oriented Programming Paradigm O. Rey

c) BR2 version M+1must contain BR2 version M because this
old version of the business rule must work on old data,
even if the old data was migrated to the new N+1 version
(and the same for P3 and BR3).

2.4.2 Temporal Couplings

All that gives us the following new temporal coupling (in red
in the Analytic View of Fig. 4):

a) Data version N is coupled with structure version N+1;

b) Old code (BR2 version M and BR3 version L) is modi-
fied to manage old data stored on new structures (version
N+1);

c) New code (BR2 version M+1 and BR3 version L+1) must
manage new and old data stored in version N+1.

Those couplings are really strange because the real need for
evolution is that version M+1 of BR2 is managing data version
N+1 on data structures in version N+1 and the same for BR317.

So why are we doing those complex, risky and costly migra-
tions?

Actually, considering our ways of storing information, it is
not (easily) possible to version the storage structure18.

So, when a new requirement implies an evolution of the stor-
age structure, this storage has to become the new storage for
all data of the same kind: old ones, that potentially will never
evolve anymore and do not need the structure modification, and
new ones that require the structure modification.

For sure, as long as all data (old ones and new ones) are
located inside the same table, there should be only one version
of program to manage them, whatever their age.

We can imagine in what state are the data and the code
after tens of regulatory changes: they have to become un-
maintainable.

2.4.3 Time Management Consequences

This way of managing evolutions in software and data implies
blocking progressively the system. After some years, it be-
comes extremely dangerous to dare a major evolution in the
code because it may brake something or on current business
rules, or on past business rules applying to past migrated data.
Moreover, each new regulatory change can bring a real risk for
the system to generate unexpected behaviors or bugs.

The core issues appear to us as dual:

a) The RDBMS use implies very complex, risky and costly
data migration processes;

b) The absence of shared timelining software concepts and
best practices for software engineering.

17For instance, in accounting, in banks, tax collections, insurances, pensions,
aerospace maintenance, etc., past data do not need to be migrated because they
will change no more.

18We can see in some huge accounting systems this versioning of storage
with databases that are dedicated to manage specific structure for a specific set
of years.

For instance, an application business rule really need to
evolve if and only if the new rule applies to all data inside the
database. If the rule applies only to recent data and the old
rule still applies to old data, then the new rule cannot really be
conceptually considered as an evolution of the previous rule.

In other words, the new rule has its domain of application in
recent data, domain that is disjoint from the old data set that is
the domain of application of the old business rule. By declaring
a priori that only one rule should manage all cases, we fusion
two functions that do not have the same domains of application.
Another obvious way to solve the same problem is to have two
rules that could declare themselves not applicable on the data
they cannot manage.

2.5 The Cost of Coupling
2.5.1 The “Glue Effect”

Our software practices generate tight coupling inside the enter-
prise software, both at the code level and at the database level.

Those tight coupling, in the maintenance and evolution
phase, make all evolution harder and harder with time. The
design of the application and database cannot evolve easily, es-
pecially in contexts where time and budget are short.

It is surprising that the shareholders of IT projects (users,
functional experts, software engineers, architects, managers,
executives) seem to accept this continuous slowing down in the
rhythm of evolutions and this continuous cost increase of any
evolution19.

We will say that the maintenance and evolution phases are
demonstrating a Glue Effect: progressively, the enterprise soft-
ware seems “glued” what prevents every significant change to
happen in reasonable time and money. The software industry
seems to live with both the problem and the work-arounds. Sur-
prisingly, in the software world, it seems accepted that software
is as hard to evolve as concrete plants.

Tight coupling is the material of technical debt [23, 25, 24]:
the technical debt is the overcost that we must pay to develop
a feature, compared to what we would have paid for the same
feature in a project mode i.e. without code legacy constraints.

In systems, the Glue Effect can be explained by the gener-
ation of technical debt: with time, we should invest more and
more money and effort to realize the same function.

2.5.2 The Huge Cost of Coupling

The software industry is focused for years on the rapid applica-
tion development20 but does not take into account the mainte-
nance process and its costs.

If we analyze the cost of function point [27] after the initial
deliveries, we realize that the cost of the function point is in-
creasing with time. After a decade or more, we can see many
applications that will have, for a constant budget, a number of
function points developed per year that will tend to zero21.

19Considering constant manpower.
20RAD method was a sample of this preoccupation. Agile methods are also

focused on quick delivery of applications.
21Which correspond to a price per function point that tends to infinity.

Page 7

The Graph-Oriented Programming Paradigm O. Rey

If we consider that an application will last 10 years in main-
tenance after 2 years of project (build), the total cost of mainte-
nance is quite often far superior than the project cost. Thus, the
productivity during the maintenance and evolutions phase is of
the utmost importance, budget-wise.

Moreover, in terms of company agility and capability for a
company to accommodate business or regulatory changes, the
productivity of the maintenance and evolution phase is crucial:
If the company had to face issues adapting its IT systems, it
could risk to be late compared to the competition. This pro-
cess is also illustrated in administrative enterprise software that
cannot evolve easily and that prevent any major process trans-
formation. This problem seems to us as one of the biggest prob-
lems in enterprise software. It costs billions of dollars to states
and companies.

Philosophically, even if we cannot pretend to prove the fol-
lowing statement, the reduction in the global productivity rate
that the economists saw in the last few years may be partially
due to the complexity of maintenance and evolution phases
of the enterprise software in companies and administrations.
Most companies and administrations live their IT systems as
problems due to the Gordian Knot: invest massively for small
risky evolutions or invest even more massively for a very very
risky rewriting. This causes a freeze in process evolutions and
a very huge difficulty to adapt the business processes to new
constraints and challenges.

For sure, IT service companies have a certain interest to
maintain high costs of maintenance and evolutions. During the
life cycle of applications, more money is generated from the
maintenance and evolution phase than during the project phases
where market prices are low due to high competition. So, when
IT professionals have a certain interest not to be technically ef-
ficient in certain phases of projects, we can understand that the
industry is not very keen on searching for new effective solu-
tions.

2.5.3 Conclusion

As a conclusion, we can say that, structurally, the core tech-
nology we use (object-oriented programming and relational
databases) forces us to generate tight coupling and technical
debt from the very beginning of the application construction22.

The graph-oriented approach will enable the software indus-
try to reduce drastically the technical debt. For that, we must
adopt a new way of modeling and a new way of programming.
We will call this approach the graph-oriented programming
paradigm.

22This is often seen in projects when the development phases phases start
before the design is done or ended. The project has to cope with legacy code
that software engineers tend to reuse whereas there is not a single line of code
running in production. Thus, some projects may get stuck in legacy code from
the very beginning of the project and even before completing the software de-
velopment.

Feature Semantic
(RDF)
Database

Relational
Database

Graph
Database

Nodes Yes Tables Yes
Node types No (String) Yes Yes
Node typed at-
tributes

No (String) Yes Yes

Relationships Yes Foreign
keys

Yes

Relationship
types

No (String) No Yes

Relationship
typed attributes

No (String) Yes Yes

Query language SparQL SQL graph-
oriented
query
language

Table 1: Comparison between database types

3 The Attributed Directed Graph
Databases, a Game Changer

The creation of attributed directed graph databases23 in the soft-
ware world is an event of the greatest importance. Even if, at
the time this paper is being written, the graph databases are
mostly used in the Big Data world, their use in enterprise soft-
ware will revolution our very way of thinking about software.

By (attributed directed) graph databases, we mean databases
that have the following characteristics:

1. They manage node24 and relationships typed instances25;

2. Node and relationship types can have a variable set of
typed attributes;

3. They propose some kind of graph query language26.

This way of storing data brings a unknown softness in
data structures (compared to relational databases) because they
manage links outside the node itself, which enables the evolu-
tion of links without changing the structure of the nodes (con-
trary to relational database foreign key concept). This enables
the evolution of data structure through evolutions of relation-
ship types and node types independently.

Indeed, the attributed directed graph database as we know it
today is an intermediate between relational databases and se-
mantic databases as shown in table 1.

The primary objective of this article is to explain what pro-
gramming paradigm can be used with graph database technol-
ogy to have the same softness in the software than we have
inside the data structures.

23In the rest of the document, we will speak about “graph databases” instead
of using the term “attributed directed graph database”.

24We can also name nodes vertices and relationships edges.
25Or some kind of typing through labeling in the Neo4j database case.
26For instance Cypher in the Neo4j case or a SQL extension in the OrientDB

case.

Page 8

The Graph-Oriented Programming Paradigm O. Rey

Figure 5: Node and relationship types

Figure 6: Node and relationship types with attributes

4 Introduction to Graph-Oriented
Modeling

In order to illustrate our speech, we have to introduce, in this
article, a domain specific modeling (DSM) language to be able
to represent the graph concepts in a consistent way [29].

Going through the article, we will progressively enrich the
meta model of this DSM language to be able to graphically il-
lustrate the various features of the graph-oriented programming
paradigm.

4.1 Representing Node and Relationship Types
4.1.1 Basic Artifacts

First of all, we need to represent node types and relationship
types. The graphical conventions that we will take are shown
in Fig. 5: yellow circles for node types and blue parallelograms
for relationship types. Note that the relationship is oriented;
this enables us to designate a source node (Node Type A)
and a target node (Node Type B).

With the artifacts defined, the Fig. 5 builds the graph-
oriented structural view.

4.1.2 Why Not Use the UML Class Diagram?

The UML notation (class diagram) is not adapted to the rep-
resentation of graph structure (representation of node and rela-
tionship types) because UML does not materialize the relation-
ship types as plain entities that can contain attributes. In UML,
the relationships are represented through aggregation, compo-
sition, extension or association lines. The Fig. 6 shows node
and relationship types with attributes, which is impossible to
represent in UML27.

The Fig. 7 proposes a comparison between the two modes
of thinking: the object-oriented one (represented by the UML
view) and the graph-oriented one.

We can discover in this figure that UML does not specify the
semantics of the relationships between object types (classes).

27This is not totally true because we could use stereotypes, but as we will see,
there is a great interest to define a specific graph-oriented modeling approach.

Figure 7: Comparison between UML class diagram and graph-
oriented modeling structural view

Through the extension, aggregation and composition symbols,
UML proposes some kind of generic graphical syntax for three
of the four traditional relationships (displayed in Fig. 7). This
generic syntax is not an issue because, in an object-oriented
world, structural relationships are implemented (in the code) in
a non ambiguous way.

When modeling the graph-oriented corresponding diagram,
we have to make semantic choices and name the relation-
ship types also. The names we took for relationship types
(CONTAINS, IS A, POINTS TO) are choices that are coming
from our way of considering the system we are modeling, but
our choices could be different.

Actually, from the very beginning of the modeling of an
application, the naming of the relationship types introduces
semantic questions that are not present in UML and object-
oriented modeling. We will see, in the coming parts, that some
practices of the graph-oriented modeling are quite near from
semantic design [33].

4.1.3 No Structural Relationships

UML considers aggregation, composition and extension as be-
ing structural relationships.

In graph-oriented modeling, we have no distinction of the
kind: relationship types can be structural in their semantics,
i.e. relatively to their meaning. However, the graph-oriented
DSM language that we propose to consider, does not provide
any way to tag a relationship type as structural, or to distinguish
so-called structural relationships from the others.

Page 9

The Graph-Oriented Programming Paradigm O. Rey

Figure 8: Representing aggregation in graph-oriented modeling

4.1.4 Representing the UML Aggregation and Composi-
tion Links

To go further on the treatment of object-oriented aggregation
and composition links, let’s consider Fig. 8 that proposes a
sample of semantic ambiguity in UML: the cocktail and the
car sample.

In UML, the use of aggregation is normal in this case (class
diagram on top on Fig. 8): Neither the Orange Juice nor
the Wheel can be considered as a composed class of respec-
tively Cocktail and Car classes because Cocktail and
Car classes have their own life cycle inside the application. In
UML, as we are quite near from the object-orented implemen-
tation, we can reuse the same aggregation symbol in the design
because at the end, the code will not materialize the aggregation
link as a separate concept but as a structural relation (a member
of the class Cocktailwill be an instance of Orange Juice
and a member of the class Car will be an array or a vector of
some sort of instances of the class Wheel).

In the View 1 of Fig. 8 (box in the middle of the figure),
we can see what would be the graph-oriented equivalent de-
sign if we had use the same relationship type AGGREGATES
to represent the two UML aggregation symbol. This model-
ing appears as quite ambiguous, because Cocktail does not
AGGREGATES Wheel nor Car Orange Juice.

In UML, the notation is also ambiguous because we can-
not express the fact that once linked, the Cocktail and the
Orange Juice cannot be separated, whereas the Wheel can

be separated from the Car. As the aggregation link is consid-
ered (a) structural and (b) generic, the code will have to deal
with this specificity that cannot be expressed at the modeling
level.

The View 2 of Fig. 8 introduces a different graph-oriented
modeling of the aggregation relationship. With two relation-
ship types to address both uses of the UML aggregation sym-
bol, we add a semantic specificity to each link.

This will enable the code to consider that the INGREDIENT
relationship is behaving differently from the PART relationship.
For instance, we will be able to express that, in an instance
of Cocktail containing Orange Juice, we cannot remove
the Orange Juice once it is melted.

The last thing that we will note about the Fig. 8 is that our
semantic enrichment did not really go through a new verb def-
inition (like AGGREGATES) but through a characterization of
features. In UML, the link being named “aggregation” makes
the following wording possible: a Car aggregates a Wheel,
which look like a semantic RDF-like triple. Actually, the
graph-oriented modeling equivalent would make the following
wording possible: a Wheel is a Car PART.

This nuance is not a general property because, sometimes
the relationship type in graph-oriented modeling will express a
verb and, some other times it will express a characterization of
a feature or something else. By having the means to detail re-
lationship types, we have, in graph-oriented modeling, expres-
sive capabilities that go far beyond the way we usually model
in object-oriented mode.

That is a fact that the UML aggregation/composition link
generally hides semantics that graph-oriented modeling ex-
hibits. If we were to provide an explanation for this fact, we
would say that this syntax is a direct projection of the imple-
mentation concerns.

We can note that, on the contrary, in graph-oriented mod-
eling, we currently have no real idea on how the implementa-
tion will be done. Designing without the implementation con-
straints in mind is, for us, quite a progress, as we will see in the
rest of the article.

4.1.5 Representing the UML Specialization Link

We can propose the same kind of analysis for the specialization
link that is available in the object-oriented approach. The Fig. 9
shows a standard graph relationship between concepts instead
of using a generic specialization relationship.

We will not enter, in this article, in the discussions about
the consequences of specialization on methods (we will come
back to the treatment side of graph-oriented programming af-
terwards)), such as the method inheritance or the “deadly dia-
mond of death” [28], but we will just note that the capability
of representing extension by a relationship type opens new per-
spectives.

For instance, in Fig. 9, the View 1 is equivalent to the UML
view, except that the IS A relationship may not be used in all
the cases where the extension UML relationship is generally
used.

On the contrary, expressing specialization with typed rela-
tionships enables to enter new semantic possibilities:

Page 10

The Graph-Oriented Programming Paradigm O. Rey

Figure 9: Representing specialization in graph-oriented model-
ing

1. In the View 2 of Fig. 9, the INSTANCE OF relation-
ship makes a bridge between instances and type, which
is rather unusual in enterprise software (but is quite usual
in semantic design);

2. In the View 3 of Fig. 9, the GOVERNED BY relationship
enables to manage, inside the same storage system, the
model and its metamodel and to perform operations at
both conceptuel levels.

As in graph-oriented modeling, there is no structural rela-
tionship (in the object-oriented meaning). We have to make
a semantic choice to characterize the specialization link. One
consequence of that fact is that it opens new perspectives be-
cause we can manipulate several level of abstractions at the
same time.

Once again, in a classic object-oriented approach, the spe-
cialization link is quite near from the implementation. By cre-
ating a class hierarchy, we intend to have the inheritance of
attributes and methods. This concern often tweaks the design
with implementation concerns.

4.1.6 Comments on Relationship Type Constraints

The relationship artifact that we introduced has the same prop-
erty as its attributed directed graph database equivalent:

a) An instance of relationship is existing if and only if a
source and target nodes exist;

b) If the source or the target node or both disappear, the rela-
tionship instance disappears;

Relationship Source
Node
Type

Target Node
Type

Cardinality
constraint

INGREDIENT Cocktail Orange Juice
and other in-
gredients

One instance
per target
type

PART Car Wheel
or other part

4 instances
of PART
relationship
per standard
car

Table 2: Sample of relationship constraints table

c) In terms of types, the relationship types can connect
several node types; we can also have relationships that
take *ANY TYPE*

28 as their source node type and/or
ANY TYPE as their destination node type.

In graph-oriented modeling, we will have the requirement
of representing constraints on relationships. The topic of con-
straints is a common complex problem in modeling and we will
not enter in details in it. We will mention the two constraints
that we find important for most enterprise software modeling:

1. Cardinality constraints;

2. Source and destination node type constraints.

For instance, considering Fig. 8 View 2, we can define the
table 2 that describe the constraints that we have relatively to
cardinality and node types.

For sure, the semantics of the constraints should be detailed
in the case of the implementation of a graph-oriented modeler.

Though the expression of those basic constraints, we can ex-
press various subtle things such as:

a) When the relationship type is limited to a certain set of
source and destination node types, it becomes a seman-
tically non ambiguous expressive way of describing the
business;

b) When the relationship type points to *ANY TYPE* or is
pointed by *ANY TYPE*, we can imagine that the rela-
tionship type is a bridge between domains and is used in
some kind of extensibility mechanism (see part 7.4).

Some modeling languages are proposing many tools or are
dedicated to constraint modeling [31, 14]. However, by expe-
rience, we consider that too detailed constraint expression in
modeling can be dangerous because it pushes to express parts
of business rules in the model while the other parts must be
expressed textually. This split of semantic information is one
source of trouble in the implementation phase. For this reason,
we always saw a quite low adoption of constraints languages in
the design phases of projects.

Actually, cardinality constraints and relation type connectiv-
ity constraints are quite straightforward, in the sense that they
generally do not express parts of business rules. It is, at the

28We will use the notation of a text between stars when we refer to generic
concepts (relationship or node types).

Page 11

The Graph-Oriented Programming Paradigm O. Rey

Figure 10: Typed Attributes as Node Types

same time, the minimum constraints that should be expressed
and the maximum before entering too deeply in business rules.

We can mention other approaches like business rule mod-
eling languages [?] that can be considered as an extension of
constraint modeling. Once again, they seem not to be widely
used. In graph-oriented programming, we will prefer to deal
with business rules through the notion of graph transformation
(see section 6).

To conclude on this point, we will mention that current at-
tributed graph databases in the market do not propose simple
ways on creating constraints on relationship types29.

4.1.7 Node Types or Typed Attributes

One of the consequences of being near from semantic design is
that graph-oriented modeling is facing the same questions as in
object-orientation about the attributes. When you store typed
attributes inside a node type, the question raises to group those
attributes as a separate node type.

Let us consider Fig. 10. The View 1 is proposing to represent
two business concepts Aircraft and Pilot, each of them
containing position attributes PositionX and PositionY.
The View 2 defines a new concept Position grouping
those two attributes PositionX and PositionY, and a
new relationship type IS LOCATED having also two attributes
ArrivalDate and ArrivalHour.

The View 2 enables to determine easily that both the
Aircraft and the Pilot are at the same position. If some
geolocation library is available, we can imagine to search for
all node instances of type Position and to go back the
IS LOCATED relationship instances to find all instances of
Aircraft and the Pilot that are in a certain location or
near. The relationship IS LOCATED is introducing a kind of

29Some of them do not have real constraints on attributes neither.

bridge between the Aircraft and Pilot business concepts
and the semantic space of Location.

We can mention another sample of that attribute externaliza-
tion phenomenon coming from an industrial project that needed
specific color management. The externalization of the color at-
tribute in a specific node type Color led to the building of a lot
of functionality around color management, and to think differ-
ently about color and product relationships: it defined a color
semantic space that possessed its own dedicated treatments. In
the design phase, it was possible to separate the color man-
agement from the rules that were attaching the Color to the
industrial Product is was an attribute of.

For sure, all this is a very classic concern of software design
and we can use attribute externalization in object-oriented pro-
gramming also. But graph-oriented modeling manages this ex-
ternalization far better by introducing a relationship type that
bridges two semantic universes. The relationship types be-
ing non-structural, the reuse of the attribute-based node types
becomes much easier in graph-oriented programming than in
object-oriented programming.

4.2 Introducing the Domain Concept
A direct consequence of the disappearance of structural rela-
tionships is that we can work of graph-oriented data at sev-
eral abstraction levels. As we just saw in Fig. 10, through the
use of some relationships, we can also define different seman-
tic spaces. In a way, the abstraction between the relationship
linking the model elements to their metamodel definition (see
Fig. 9 View 3) can also be seen as a bridge between two seman-
tic spaces30.

We propose to name those semantic spaces domains, be-
cause in the software industry, the notion of business domain
is widely used [8]31.

During the graph-oriented modeling phase, the idea will be
to analyze the business and to group node and relationship types
by domains. We can imagine a lot of kinds of domains: busi-
ness domain, technical domain, utility domain, metamodel do-
main, etc.

The Fig. 11 shows a multi-domain approach through a sam-
ple from the aerospace maintenance. Domains are containing
node and relationship types.

Some relationship types can be bridges or inter-domain re-
lationship types (partially represented with a double arrow in
Fig. 11). This point is very important because this inter-domain
connectivity is one of the crucial sources of software extensi-
bility in graph-oriented programming (see part 7.4).

4.3 Overview of Some Graph-Oriented Model-
ing Practices

In this part, we will list some practices that emerge when we
are doing graph-oriented modeling in the context of enterprise

30Some RDF-based graph databases such as AllegroGraph are clearly
adapted for the definition and exploitation of semantic links between various
semantic spaces.

31In some markets such as France, the notion of (reusable) business objects
in enterprise software can be dated to the beginning of the 90’s.

Page 12

The Graph-Oriented Programming Paradigm O. Rey

Figure 11: Domain concept illustration and inter-domain rela-
tionships

software.

4.3.1 The Business Functional Analysis in UML

Theoretically, in projects using an object-oriented approach, we
should have several levels of modeling:

1. The use cases;

2. The functional analysis model;

3. The design model;

4. The database model.

In most object-oriented development methods, like [16, 6],
after the use case definition phase (or in parallel), the method
proposes a phase of business functional analysis to perform be-
fore entering into the design phase. During this analysis phase,
the objective is to realize the modeling of the semantics of the
business domain, identifying business concepts, relationships
between those concepts and cardinality.

In this phase, the use of the specialization, aggregation and
composition links is often not recommended, because it may
introduce implementation concerns inside the functional analy-
sis. The functional analysis phase is quite often a real important
phase of good enterprise software construction32.

32The analysis diagrams sometimes look like “concept maps”.

This phase is not widely practiced in the software industry
because most software engineers consider it as being an unnec-
essary effort compared to the design phase. But rushing into
design without a proper business analysis may introduce a cer-
tain confusion between the business semantics and the business
implementation.

4.3.2 The Progressive Abandon of UML

For more than a decade, we have seen a progressive discon-
tinuing use of the design phase (in UML) in software projects,
which makes it even harder because instead of rushing directly
in the design, software engineers directly rush into the code.

Agile methods sometimes push for those “code-first think-
after” behaviors.

One other reason may be the complexity of web application
design that makes UML not really adapted for the Internet: the
Web technologies are not fully object-oriented, they use sev-
eral programming languages (HTML, JavaScript, CSS and a
Java or .Net server33) and paradigms (document-based, func-
tional, object-oriented, and so on) and various client-server ap-
proaches.

This implies that, in a lot of software projects, only database
models can be found (mostly because they can be generated a
posteriori).

4.3.3 Reintroducing Modeling

In a certain way, UML did not fulfill all its promises because:

a) It is a set of disconnected symbolic languages (one per
diagram) and it is quite complex to ensure specification
completeness with UML;

b) It is not really adapted to Web application design (nor to
server side application design); It can be used in those
cases but with specific conventions and work-arounds;

c) It is not a method but a language, which means that it can-
not be used off-the-shelf but within a certain method that
most project do not have the time to set-up.

However, the absence of modeling (being in functional anal-
ysis or design) do not make problems disappear. Modeling is
still required in enterprise software and not doing it leads to
great inefficiency in the maintenance and evolution phase34.

4.3.4 About Graph-Oriented Modeling

Graph-oriented modeling fulfills the dream of object-oriented
designers because it is at the same time:

a) A semantic analysis that is more expressive than the
object-oriented functional analysis phase;

33In some Web projects, there can be more esoteric languages or syntax de-
signed to be JavaScript-based domain-specific languages or JavaScript genera-
tors.

34Maintaining a big software without design documents is like trying to find
its way in the metro with two closed eyes.

Page 13

The Graph-Oriented Programming Paradigm O. Rey

b) A design action because what is designed will be imple-
mented in a straightforward way (down to the database).

Moreover, graph-oriented modeling does not presume about
implementation and the certain views created with the DSM
that we propose can be shown to non-software users, provided
they are able to understand conceptual diagrams.

Graph-oriented modeling is a huge step ahead at the same
time for software engineers because it enables one modeling
for several phases, and at the same time it is a huge step ahead
for users because they will be able to understand IT documents
and models.

However, we will insist on two very important facts:

1. Models must be used in all phases, because the negative
side of all graph-oriented modeling advantages is that the
application can become very complex, which makes it
mandatory to maintain a map;

2. Models must describe the structure of the business, i.e.
the node and relationship types, and instance-based design
must be restricted to complements to structural modeling,
and must be considered as samples enabling to understand
the structural model.

In particular, as an echo of the second point, we cannot
imagine to design enterprise software with only instance-based
views.

4.3.5 Instance-Level Modeling

Some graph databases software vendors propose a modeling
phase that is only based on node and relationships instances
view. This position seems to us as not sufficient to build large
enterprise software. Indeed, the corresponding UML assertion
would be that is is possible to design big software with just
collaboration diagrams.

For sure, instance-based diagrams are very important, espe-
cially when the various instances of the same types do not play
the same role in the represented figure (but that is a common
topic in modeling).

The Fig. 12 shows the difference between a structural view
(View 1) and an instance view (View 2). It is easier to under-
stand how the PREVIOUS relationship works when we see the
instances (noted with a leading “:” in the figure).

Note that the graph-oriented modeling approach enables us
to link together instances and types like shown in Fig. 13.

This way of representing can bring some confusions and so,
if it is used, it should be with strict naming conventions on re-
lationships. In the figure, we named with surrounding “*”, the
INSTANCE OF relationship types and we used a suffix with the
name of the node type. The stars indicate a very special case
of relationship type (link from the instance to its type) and the
suffix enables not to reuse those links for all node types.

Even if the Fig. 13 can be considered as a style exercise,
it shows that, in graph-oriented modeling, the delimitation be-
tween instances and types is sometimes not so clear (which is
also a characteristic of semantic design [33]).

Figure 12: Instances

Figure 13: Instances linked to types

Page 14

The Graph-Oriented Programming Paradigm O. Rey

Considering this tweak, the modeling tool could be limited to
the management of one single type of view, or it could propose
structural and instance views.

4.3.6 One Model, Multiple Views

The last point that we will mention is the need to navigate in-
side the model. This part is very important in the way that, the
graph representing the business at the core of an enterprise soft-
ware, will not be representable in a single view. Like in UML,
we need many views with the capability of showing node and
relationship types on many incomplete viewpoints.

Once the views are realized, the modeling tool should offer
the capability to navigate in the graph model composed by the
union of all views.

This enables an iterative process to go from individual views
to a model exploration and from the model exploration to the
individual views. This process seems to us as crucial in graph-
oriented modeling.

The reason is, in a large software, the graph model cannot be
grasped in one shot by a human mind. Even if we use domains
to group entities, the exploration enables to center the model
on a specific node type and the study of the relevance of all
incoming and outgoing relationships, independently from the
various views that represented probably various use cases of
the application.

The Fig. 14 shows a generated model view centered in node
type A and that aggregates the modeling constraints done in
View 1 and View 2. From node type to node type, the model
can be browsed in order to reach a global consistency35.

4.4 First Conclusion On Graph-Oriented Mod-
eling

Graph-oriented modeling is a big step ahead that enables to
fusion many phases of the traditional object-oriented design-
process. Moreover, it enables to define a common language
between users and software engineers.

Graph-oriented modeling process coupled with graph-
oriented programming (that we will detail in the coming sec-
tions) should accelerate enterprise software development while
reducing the gap between the user and the software professional
understandings.

However, we think a modeling tool must be used and main-
tained up to date, at least for the node and relationship types36.
Moreover, this tool must provide graph-adapted tools (such as
model exploration) to be able to solve semantic ambiguities and
achieve global consistency.

Graph-oriented modeling is an iterative process that will, at
a certain moment, converge to a robust model describing prop-
erly the business. In a certain way, this process may appear as
much more iterative than the object-oriented design, because
of the required identification of the proper relationship types.
Graph-oriented modeling is integrating semantic design into

35We can see those kinds of practices in enterprise architecture modeling.
36We will see more artifacts in the coming sections.

enterprise software and enables many advantages that we will
discover in the rest of this article.

5 First Implementation Aspects
Even if we did not introduce all modeling concepts yet, it is
time to get a first look on the implementation aspects.

5.1 Code Representation of Graph Concepts
In the previous sections, we saw basic modeling entities: node
and relationship types. We have to clarify in what way those
entities are represented inside the code itself.

The representation of node types and node relationships in-
side the code depends on the programming language that we
use. We can define quite distinct representations of those enti-
ties depending on the fact that we are in an object-oriented lan-
guage or a functional language. However, we think the spirit
of graph-oriented programming can be quite near in all sorts of
programming languages.

5.1.1 Node And Relationship Types

In the case of object-oriented languages, we must warn again
about the fact that we cannot use the native aggregation/com-
position/extension links inside the code. Even if the language
allows it, we must not use it or we would create the same de-
pendencies as the ones exposed in part 2.1. For functional lan-
guages, it is the same. If we use a list of attributes to represent a
node, we cannot use an attribute to contain a pointer to another
node, but we have to use a dedicated relationship structure that
is not coupled with the source and target node type representa-
tion.

This being said, we are going to define the minimum set of
requirements that we need to ensure the proper working of a
graph-oriented set of programs.

This minimum set is presented in table 3.
With the requirements described in table 3, we can create

nodes and relationships37, set a relationship to point to known
nodes (source and destination).

5.1.2 The Need For a Memory Graph Structure

We need a way to represent the graph in memory as an opaque
structure that will provide graph manipulation APIs. We will
speak about this concept by using the term Graph (whatever
the programming language that we are considering).

We can wonder why we need such a structure considering
that each relationship has source and target IDs and that it is
easy to rebuild the graph manually.

We see two reasons for that:

1. The first one is that manipulating graphs in memory is a
tricky thing and that, for efficiency purposes, it is better
to use some kind of memory graph management library,
that would propose some convenient APIs such as the ones
detailed in table 4;

37By nodes and relationships, we mean node and relationship type instances.

Page 15

The Graph-Oriented Programming Paradigm O. Rey

Figure 14: The generated model view centered on a node

Requirement Sample in OO language Sample in functional language
Programmatic representation
of node type

Class List/struct with typed members

Programmatic representation
of relationship type

Class with a source node ID attribute and a
target node ID attribute

List/struct with typed members with two
members for the source and target node IDs

Programmatic representation
of graph

There must be a class Graph enabling graph
manipulation. The implementation does not
really matter.

There must be a structure representing the
graph and enabling graph manipulation. The
implementation does not really matter.

Graph manipulation API Methods on the Graph class Functions acting on the graph structure

Table 3: Minimum set of requirements for a graph-oriented implementation

2. The second one will find all its meaning in the section 6;
It is based on the fact that it can be very interesting to ma-
nipulate the graph from the outside of the graph structure
itself.

As an echo of the second point, we can say that when im-
plementing business rules in object-oriented programming, we
have to navigate explicitly through the aggregations inside the
objects. This generates a code that is completely linked to the
structural class dependencies.

If we manipulate the (memory) graph from the outside, that
means that we can consider it as a separate entity (Graph) that:

a) Can demonstrate certain configurations of nodes and rela-
tionships, what we will call graph topology properties;

b) Can propose ways to manipulate graph parts (i.e. nodes
and relationships).

In graph-oriented programming, we can separate both con-
cerns, when it is not possible in object-oriented programming.
We will discover how powerful this approach can be in sec-
tion 6.

5.1.3 Graph Manipulation API

The graph manipulation API must provide basic and advanced
manipulation routines for graphs. The minimum requirement
list for the graph manipulation API is provided in table 4.

For sure, we could probably imagine other features for the
graph API but this list is a first set of tools that are at the same
time very useful and commonly required.

In terms of programming, the concept is simple: each in-
dividual node and relationship is manipulated alone, while ma-
nipulations that require more than one element are performed in
the graph structure itself through the graph manipulation API.

This way of proceeding has many advantages because there
is no temptation to tightly couple things together. Actually, the
way the (memory) graph is implemented internally has no real
importance38 on developments. We can imagine various imple-
mentations depending on the constraints the enterprise software
is submitted to39.

38We can imagine memory graph storage that do not store graphs as objects
or structures but in more optimized ways.

39For instance, if the application needs to manipulate large sets of nodes in
memory, the implementation of Graph could implement a kind of memory
indexing mechanism.

Page 16

The Graph-Oriented Programming Paradigm O. Rey

Category Requirement Description
01 Basic Create graph from select query
02 Basic Get graph root node (in the context where the root

node has a meaning, we will come back on that
point)

03 Basic Add nodes and relationships inside the graph
04 Basic Delete a node or a relationship inside the graph
05 Basic Modify a node or a relationship inside the graph
06 Basic Get nodes and relationships from the graph to ac-

cess them in a object-oriented or functional way
07 Advanced Assert a topology condition on the graph (returning

true or false)
08 Advanced Search for nodes and relationships with some cri-

teria (such as per attribute value)
09 Advanced Merge two different graphs
10 Advanced Persist the graph
11 Advanced Match a pattern in the graph
12 Advanced Perform some other complex operations on graphs

(for instance, for two graphs G1 and G2, create the
graph G3 = G1 ∩G2)

Table 4: Minimum set of requirements for a graph manipulation
API

The requirement about the graph persistence (#10) should to
be considered mainly in case the code manipulating the graph
is located on the server side (like in a typical Web application).
This service can be implemented at the graph level40 and be a
real help for the programmer.

We can note that we do not insist on graph queries, including
traversals, except on requirements #01 and #09. For sure, we
need a way to query the database and to create a graph with the
results. But the benefits that graph databases bring to enterprise
software go far beyond the powerful query languages, as we
will see in section 6.

About querying the database and creating a graph with the
result of a query, it is important to note that not all queries pro-
vide a graph: some provide graph parts but some may provide
values for fields. Requirement #01 must be understood this
way: if the result of a select query is a graph, then the graph ma-
nipulation API should enable to create a memory graph with it.
The memory graph library will also manage parts of graph that
are not mathematical graphs (for instance a solitary relationship
pointing to node IDs that are not included in the graph, a node
and its outgoing relationship that points to another node that is
not is the graph, etc.). The graph notion that we will have at the
software level can be a part of a mathematical graph or a union
of disjoints parts of mathematical graphs.

As a conclusion, the graph manipulation API is not complex
to develop, except probably the topology assertion mechanism
(requirement #07) that can use non trivial graph isomorphisms
algorithms.

5.1.4 About The Need For a Graph-Oriented Program-
ming Language

Currently, there is no graph-oriented programming language
available in the market.

40Some implementation may even trace what changed in order to commit
only the modifications to the graph, in a single transaction.

Some open source projects attempted to introduce “graph-
like” syntax. Gremlin for instance [21] considers the graph as
a tree structure that can be navigated with the use of the “.”
(usually used for method access in Java). This, for us, is another
way of generating huge coupling in the code, because the piece
of code that will implement the traversal, will stick together
a chain of nodes that, potentially, will not be linked this way
tomorrow.

Having the capability to manipulate graphs natively inside
the code may be interesting providing we do not loose our en-
gineering objective: guaranteeing the long run maintenance and
evolutions of enterprise software through the extreme limitation
of unnecessary couplings. As we will expose in section 6 and
followings, we will see that we are not blocked today by the
absence of a graph-oriented programming language. Being in a
functional environment or an object-oriented environment, we
have all the required tools and technologies to enter the world
of graph-oriented programming.

5.2 Software Structures Nearer From Business
Concepts

In enterprise software, in the case of object-oriented program-
ming, the question of manipulating business concepts inside the
code is a central question of the industry for decades.

5.2.1 The Object-Oriented Business Layer

Most software engineers have realized for a long time that it
was useful to have an business layer that represented as accu-
rately as possible the business concepts [8].

Most of the time, this layer could not be strictly serialized in-
side a database. Engineering teams were facing the traditional
questions of:

1. Database denormalization [34], i.e. the right way to adapt
code and tables all constraints considered (prioritized con-
straints);

2. Adapting the business code through an database adapta-
tion layer between business objects and relational tables,
also called data object layer.

We can see, in the industry, several approaches to this issue:

1. The use of an Object-Relational Mapper (ORM) and man-
ually coded adapters that take business objects to input
them inside the data objects of the ORM;

2. The use of the ORM data objects as a business object layer
[22];

3. The manual adaptation of the business objects and the ta-
bles through a custom data object layer that is enabling
more fine use of SQL queries.

In the first and third cases, there is quite often a lot of adapt-
ing code between business objects and data objects. This code
enables the software to be “not so coupled”, because with this
code, it is possible to decorrelate, in the development process,

Page 17

The Graph-Oriented Programming Paradigm O. Rey

changes in the code from changes inside the database41. In the
second case, this is not possible: all must evolve at once.

Adapters are one of the mandatory consequences of object-
oriented programming on software architecture. They can be
used as a best practice but they are very heavy in the long run,
and the service they provide (enabling partial changes inside
the software) is costing a lot of money.

5.2.2 No Adapters in Graph-Oriented Programming

We saw in section 4.3.4 that graph-oriented programming pro-
posed one single way of representing semantics throughout the
various phases of traditional software development: functional
analysis (semantic analysis), design and database.

In this section, we can say that our implementation guide-
lines of node and relationship types are completely bijective be-
tween the modeling perspective on one hand and the database
on the other. Indeed, each node and relationship type can be
created as respectively a node and relationship schema inside
the graph database42.

That implies that a lot of mappings and adapters that projects
used in an object-oriented programming context, are no longer
required:

a) Methodology mappings:

i. The mapping between business functional analysis
and object-oriented design is not required anymore;

ii. The mapping between the design model and the code
is not required anymore43;

b) Adapters:

i. The mapping between the business objects and the
data objects is no longer necessary;

ii. The mapping between data objects and the database
can be managed quite efficiently.

5.2.3 About Object-Graph Mapping

The natural conclusion of what we just said is that the use of
an object-graph mapper (OGM) can solve all issues in graph-
oriented programming. We will temper this conclusion by the
following comments.

It depends on what functionality an OGM provides and how
it can enable the application code to reduce couplings. If we
consider the graph library we briefly specified, the requirement
#07 about graph persistence makes it an OGM. However, the
storage capability is one feature amongst others. Our graph

41In a web service based platform, we have the same concern between an
evolution of the web service signature and the business layer, when it exists.

42When the database supports it, like OrientDB.
43There were massive works around the code generation from UML to C++

or Java and the parsing of manually written code to synchronize back UML
models from code. Those works were not really convincing except in some
particular cases where most of the code could be generated, which is not the
case for enterprise software. The industry using UML seems to have converged
to a rational use of UML (when they use it) in order to provide code maps and
descriptions of tricky designs, instead of targeting the both ways synchroniza-
tion of code and model.

library is more a set of tools to manipulate graphs than a dedi-
cated set of tools to persist graphs.

In particular, our graph library enables us not to program in
an object-oriented programming way, whereas it is very easy
to write an OGM that is just persisting objects in the tradi-
tional object-oriented design paradigm inside a graph database.
In that case, the OGM is just changing the backend database
but pushes for the continuation of the object-oriented program-
ming paradigm and its associated troubles that we covered ex-
tensively in section 2.

As products are changing quickly, we just want to warn the
reader about the various OGM products that are available and
that will be in the coming years. Above all, those products must
enable the graph-oriented programming paradigm that we will
detail in section 6 and followings.

5.3 Treatments in Graph-Oriented Program-
ming

To be able to have a complete view on the graph-oriented pro-
gramming paradigm, we have to explain how the treatments
are coded. As we saw in section 2, in object-oriented pro-
gramming, the methods of the objects are melting a naviga-
tional knowledge (topology) and knowledge of methods of ag-
gregated objects.

In graph-oriented programming, we have another way of
“placing” the code that we do in object-oriented programming.
Since the beginning of professional computer programming,
code placement has always been a central focus point. We will
introduce the notion of graph transformation to complete the
exposition of the graph-oriented programming paradigm.

6 Graph Transformations

6.1 Introduction

The notions of graph transformation, graph grammars, graph
rewriting, are widely studied from the 70’s in the domain of the-
oretical IT (we can cite [37, 35, 40, 41, 39, 43, 42, 36] amongst
other references). All those works are related to directed or
undirected graphs, with ou without labels and colors.

We did not find, in all this literature, a lot of usable stuff for
our problem, except in AGG [38] that was inspiring. The use
of attributed directed graphs in enterprise software seems often
quite far from the graph transformation topics that are explored
in the research area. However, the research domain being very
large, we absolutely do not claim to have explored the complete
bibliography on the subject.

In enterprise software using graph databases, we have, at the
same time, simpler and more complex problems that the prob-
lems that are generally dealt with in theoretical IT.

Actually the notion of graph transformation that we will in-
troduce is the following: a way to implement functional code,
or business rules, that do not generate technical debt.

Thus, we do not want to use more mathematical definition of

Page 18

The Graph-Oriented Programming Paradigm O. Rey

graph transformation44. For us, graph transformation must re-
main an intuitive concept, as modification queries can modify
data inside the database. For sure, as there are no more tables
in a graph database, any query can be seen as a graph transfor-
mation (a select query being the Identity graph transforma-
tion).

We do not intend neither to provide the graph-transformation
software, a software that would create an environment for the
use of graph transformation in various domains or for graph
rewriting (like PROGRES or AGG [38]). We intend to explain
how to build many graph-oriented software, because they en-
able to get rid of coupling, and open the door to long term evo-
lutions.

On top of that, our focus will be quite microscopic in the
sense where we will transform localized areas of the graph, but
we will not frequently get interested about the full graph as it
is stored inside the database.

We will have also some specific problems that do not seem
to be addressed by the IT research on graphs:

a) We have to deal with 3 levels of graphs: a design model
that is a graph (graph of modeling artifacts like node and
relationship types), the graphs of instances that we manip-
ulate in the code, and the graph of nodes and relationships
that are inside the database;

b) Our graphs are full of semantic issues related to the busi-
ness areas covered by the enterprise software.

If the IT research area does not seem to bring many solu-
tions to our problem, the IT industry is also not providing many
things, OGMs being the only promoted tools that we can find
in the area of graphs.

6.2 Modeling Graph Transformations
On top of our very large definition of graph transformation, we
will characterize the graph transformation as follows: A graph
transformation is a function45 (in the sense of a piece of code
accessible through a functional interface) that takes in input a
graph (or a subgraph) and gives in output a graph (or a sub-
graph).

The output graph can be the same graph modified (destruc-
tive approach also called with side effects) or a new graph (no
side effect approach46).

The fact that a graph transformation be a function is very
important in the programming model that is, by many ways,
functional.

6.2.1 Materializing Subgraphs

To be able to represent graph transformations graphically in
a designer, we need to be able represent the input graph and
the output graph. Instead of talking about graphs, we will

44Even if the complete set of business rules for an enterprise software could
probably be considered as a graph grammar, we will not enter this debate.

45This term has to be taken in its conceptual sense. In an object-oriented
environment, the function will probably be a method of some object.

46This approach is the standard functional approach.

Figure 15: Representation of graph transformation

talk about subgraphs because, inside the database, the complete
graph will always be much larger than the software will be able
to manipulate in a single transformation.

The subgraph notion exists in mathematics, but once again,
our interpretation of the subgraph can be a bit different: a sub-
graph is for us any part of a graph, even incomplete parts (con-
taining relationships pointing to nodes that are not in the graph,
isolated nodes, isolated relationships, etc.). This must be man-
aged by the graph library we described in section 5.1.3.

The subgraph will be materialized as a container artifact in-
side our design views. This container will be able to contain
node and relationship types (see Fig. 15). The relation between
node and relationship types and the subgraph will use the ag-
gregation symbol of UML (see Fig. 16).

The link between the graph transformation and the subgraph
will be a dashed arrow of one of two types: INBOUND and
OUTBOUND.

The use of subgraphs in modeling enables to perform very
quickly impact studies on graph transformations, node and re-
lationship types (which will be very useful in the maintenance
and evolution process).

6.2.2 Representation of Graph Transformations

Graphically, we chose to represent the graph transformation
by a rounded blue rectangle (see Fig. 15). It is connected
through dashed typed arrows to subgraph containers (through
the INBOUND and OUTBOUND indicators).

It can be interesting to note that, in Fig. 15, we have several
times the same modeling artifact instance. For sure, it is a view
trick and the model contains just one Part node type.

The Fig. 16 shows a diagram that is equivalent (bijective) to
Fig. 15 but that only represents entities once: it is more com-
plex to understand the nature of the graph transformation with
this representation.

We can note that the vision of Fig. 16 is much nearer from the
real model structure. With graph model exploration, we will be
able to perform impact study on the code, at the design level.

This is not so easy in UML where there is no way to external-
ize methods from objects. For instance, if a class A disappears
from a UML model, there is no easy way in UML to clearly
identify what are the dependencies, i.e. the classes that call

Page 19

The Graph-Oriented Programming Paradigm O. Rey

Figure 16: Subgraphs as containers

the methods of A. Some of those methods will probably ap-
pear in sequence diagrams but those methods are not complete
artifacts: they are labels of artifacts.

With the graph-oriented modeling notation of graph trans-
formation and subgraph, we can have a much more expressive
power in modeling. Graph transformation are first class citizens
from the modeling phase.

6.3 The Graph Transformation Code Structure
We are going to propose some rules to write code that will not
generate technical debt and that will limit coupling to its most
reduced expression.

Here is what we propose as a canvas for graph transformation
structure. The graph transformation must take in charge three
problems:

1. Check the input subgraph topology to determine graph
transformation applicability;

2. Transform the inbound subgraph into the outbound sub-
graph;

3. Analyze and solve rewiring issues at the limit of the sub-
graph.

6.3.1 The Topology Check Step

The graph transformation must primarily check the input sub-
graph topology to see of the transformation is applicable.

We can find the notion of applicability in the enterprise soft-
ware for industry. In that area, it is common to have programs
manipulating complex data structures (that are indeed graphs,
even if they are most often not manipulated as graphs). Those

programs must determine if the business rules apply or not to
the configuration of data.

We can note that this requirement is quite near from the
design-by-contract paradigm [19].

By checking the topology of the graph, the graph transforma-
tion determines what nodes and relationships it expects to find,
to be applicable. In case the topology is not compliant with the
expected topology, the graph transformation will declare itself
as *NOT APPLICABLE*

47.
This check of topology must:

1. Be strictly limited to the required nodes and relationships;

2. Not presume about other relationships that may exist for
certain nodes and that are not relevant in the context of the
graph transformation;

3. Be expressed in a graph-oriented topology language en-
abling assert-like clauses.

For the graph topology check, we can imagine a DSL48 [7]
working directly in the graph library and checking topology
through graph isomorphisms techniques [45].

6.3.2 The Graph Transformation Step

The real graph transformation will take place after the topol-
ogy check. It can manipulate the subgraph or create a new sub-
graph.

There are various strategies in transforming graphs and the
literature is quite big on the subject. In the case of enterprise
software, graph transformations can be seen as a consistent set
of queries that perform a meaningful semantic transformation
relatively to the considered business domain.

6.3.3 The Rewiring Step

The challenge of the third step is to ensure that only relevant
nodes and relationships were seen by the graph transformation.
When the resulting subgraph is a part of a bigger graph, the
modification must be done locally without damaging, by mis-
take, the relationships that are present but not relevant in the
context of the graph transformation that is being executed.

This is a crucial point. It means that it is as if the graph
transformation was acting on a graph view and was blind to
whatever information that is not relevant to it. For instance, in
Fig. 17, h is not modifying the inbound or outbound relation-
ships of N. If h is correctly coded, it should not see any of those
gray relationships and nodes.

This is the guarantee of the infinite and easy evolution of the
software: provided the graph transformation does not assume
more than it strictly needs to know, and provided the graph
transformation may not apply in case of topology mismatch,
we have the foundations of an ever-evolving system with no
technical debt.

47Depending on the programming language, a return code or an exception
can be used.

48Domain Specific Language.

Page 20

The Graph-Oriented Programming Paradigm O. Rey

6.3.4 The Rule of Evolutivity of Graph Transformations

We insist on the fact that graph transformations, in order to be
evolutive, must never know or look at more relationships than it
is required by the topology check. The change in the subgraph
should always be local to the logical view defined by the graph
graph transformation topology conditions.

This rule is crucial and not respecting it will generate bugs
and unnecessary couplings.

6.3.5 Coupling in Graph Transformation

Considering the graph transformation structure, coupling exist
through the knowledge of the subgraph. Indeed the coupling is
(and must be) expressed in the graph topology checks.

We can note that:

1. This coupling is the minimal coupling possible consider-
ing the encoded business rule;

2. The knowledge of a topology condition is encapsulated
with the rule itself (the graph transformation as a function
checks its validity domain and applies only if it is applica-
ble);

3. The graph transformation embeds transformation code
that is not located inside nodes nor relationships (like in
object-oriented programming) but in external functions;

4. Like in rule-based programming, the graph transformation
is unique and can be traced with a unique ID49.

The graph transformation can be seen as the minimal cou-
pling unit in an absolute way: it only sees the view generated
by the topology conditions acts on it without assuming more
things about the “invisible” parts of the graph.

6.3.6 Philosophical Note

Philosophically, we can note that the graph transformation can
be seen as a kind of method of a graph, the graph being a com-
plex object.

Actually, in a lot of cases, the object-oriented approach is not
sufficient or fully adapted to represent properly (complex) busi-
ness concepts, whereas graphs are. In terms of treatments, the
graph transformations are attached to the graph as the methods
are attached to the object (through the topology checks).

Thus, graph-oriented programming can be interpreted as a
natural evolution, or a generalization, of object-oriented pro-
gramming: objects became (sub)graphs and methods became
(sub)graph transformations.

This analogy can help us explain the real disappointment
of the IT market concerning the object databases. We saw,
from the beginning of this article, the limitations of the
OOP/RDBMS technologies in terms of coupling generation. If

49That is a requirement of some administration or military enterprise soft-
ware to be able to put in a log the exact sequence of business rules execution.
By rule-based programming, we mean a software built with some system of
rule isolation (for instance, we are not referring to expert systems that can learn,
we are focusing on predictable systems).

the object-oriented programming paradigm was efficient in it-
self, the object databases would have been a real progress in
enterprise software. The fact is object databases caused a lot of
troubles that were not caused by relational databases, especially
by forwarding the object-oriented coupling inside the storage
itself (while object-oriented programming with adapters to the
relational database can decorrelate the evolutions of the code
from the evolutions of the database).

In our opinion, object-oriented design is not fully adapted
for enterprise software because it generates, in itself, too many
couplings.

Nowadays, a lot of initiatives intend to introduce into the IT
industry new languages, especially functional languages (like
Haskell50 or Closure) or to push script languages that do not fol-
low the strict object-oriented paradigm (like JavaScript, Ruby
or Python). Those initiatives can be seen as attempts to program
differently because of the limitations of the object-oriented pro-
gramming approach.

We think most objectives that the inventors of the object-
oriented programming paradigm tried to achieve seem to be
achievable now with graph-oriented programming. If we con-
sider that objects can be structured as subgraphs and methods
are becoming graph transformations, we are quite near from
the object-oriented programming spirit while solving most of
the problems of this programming paradigm.

We can also say that the energy spent for decades to promote
a programming paradigm versus the other (structured program-
ming, functional programming, object-oriented programming)
must be envisaged through the real benefits the programming
paradigm brings. Graph-oriented programming is bringing the
tools to soften software on the long run (notion of soft-software)
by reducing coupling to its most minimal expression like we
will see in the rest of this article. To our opinion, it is one of the
best hope to change the way software is done and to prevent fu-
ture generations to manage the couplings that we created inside
the software our generation developed51.

6.4 Composing Graph Transformations

6.4.1 Bottom-Up Programming

In current enterprise software, many programs are big and are
taking in charge a lot of cases in one single piece of code. This
code embeds various knowledge of data topology.

In graph-oriented programming, graph transformations are
linked to their topology conditions, which means that, contrary
to classical programming models, there should not be, inside
a graph transformation code, business rules that apply to vari-
ous topologies. In other words, graph transformations can be
quite small, attached to a particular topology pattern. This way
of proceeding enables bottom-up programming [13] on top of
other programming styles.

50Haskell is not a new language but its adoption by the industry seems quite
new.

51A large number of companies are currently slowed down in their evolutions
by the complexity of evolutions of their central system software or client-server
(web) applications written in the 2000’s.

Page 21

The Graph-Oriented Programming Paradigm O. Rey

Figure 17: Rewiring preserves unknown relationships

Composition of graph transformations are eased by their uni-
form interface: subgraph in inbound and subgraph in outbound.
The fact that they protect themselves from non applicability en-
ables their easy composition even if, functionally, most compo-
sition will not make sense.

As a matter of facts, graph transformations appear as the
most reduced compose-able units of coupling in the graph-
oriented design software. They are the main kind of enterprise
software building blocks.

6.4.2 Composition and Reusability

For sure, composition makes reusability possible, like we can
see in the sample of Fig. 17.

We take the example of a function h that is doing timelining
of nodes. The pseudo code of h is provided in table 5.

Note that h is, at the same time:

a) With side effect: because the subgraph g is modified,

b) Without side effect: because all the nodes and relation-
ships of the initial graph stay untouched; The graph is
augmented (at the node n level).

This point is very important because we can see that the old
paradigms (including the functional programming one) are not
sufficient to describe the properties of graph transformations.
We will see soon that we can say the same about intrusiveness
(see section 7.2.6).

By spawning a node “in the past”, h preserves the inbound
and outbound relationships of n which would not have been
the case if the spawning had taken place “in the future”. If n’
would have been chosen to be the new root node52, n’ would
have required the rewiring of all n relationships. h would have
known the exhaustive list of n relationships, and so would have
violated the rule of evolutivity of graph transformations.

52We explain in section 7.5.1 the root node concept.

Hypothesis
Let clone be the clone function.
Let n be a node of node type N.
Let PREVIOUS be a relationship type.
Let createG be the function to create a
graph.
Let g = createG(n).
We call g = h(g).
h is a function cloning the root node of
a graph
h: G → G
G being the set of the database subgraphs
if g = null throw *NULL GRAPH*
if g.count() <> 1

throw *NOT APPLICABLE*
n = g.getRootNode()
n’ = clone(n)
r = new(PREVIOUS,n,n’)
g.add(n’,r)
return g

Table 5: Pseudo code for the h graph transformation

This design choice solves the rewiring problem that we saw
in section 6.3.3.

The h function can be reused by all graph transformations
taking only one node. Let f be a transformation of this kind,
f ◦ h is a correct graph transformation: it will spawn a clone
of a business node in the past before taking it as root node for
the f treatment.

6.5 Graph Transformation Evolution Rules
In this section, we will focus on the evolution of a business rule
implemented as a graph transformation.

6.5.1 Proposed Evolution Rules

During the maintenance and evolution phase of the software,
many “triggers” can imply an evolution of this business rule,
though not all triggers will imply the same strategy in graph-
oriented programming.

We propose the following evolution rules:

1. If the topological applicability conditions change, then the
graph transformation should be forked;

i. In other terms, an evolution of topological conditions
creates a new rule that cannot be considered as an
“evolution” of the previous rule;

ii. Once the modification is done, the system contains
two active rules (and two active graph transfor-
mation) with two different applicability conditions
(probably on separate sets of data);

2. If the topological conditions do not change, it depends on
data time characteristics:

1. If all data in the database are submitted to the new
rule (and none to the previous version), the rule can
be modified ;

Page 22

The Graph-Oriented Programming Paradigm O. Rey

2. If some data still obey the previous version of the
rule (generally “old” data), the rule should probably
be forked and integrated into a timeline-based de-
sign; time-oriented coupling generation in the code
can be an argument to choose one or the other solu-
tion.

Note that a change in data structure (node and relationship
typed members) is a topological change53.

6.5.2 Adding a New Attribute

The Standard Case
In the relational database case, a change in attributes often

translates into a new column inside the database, which is gen-
erating an important change in the code. In graph-oriented pro-
gramming, there is a choice to make, most often driven by the
number of business rules that will be impacted by this new at-
tribute.

In the relational case, the new attribute a will cause the ta-
ble T to define a value for all rows, even for the rows that are
related to functionally unchangeable data in the past. This pro-
cess is equivalent to a (small) data migration (all data stored in
T version n will be migrated to T version n+1).

In graph-oriented programming, we can do the same than in
relational database. The problem is that it will require (as in the
relational case) a potential retesting of all business rules access-
ing node type T. For sure, if the application contains no query
of the kind select * from, the risk of facing a problem is
low in both the relational and the graph case.
Alternate Design 1

The fact is, in graph-oriented programming, we can study an
alternate approach.

If a has an important impact on existing business rules, re-
lated to new data created after a certain date, updating T can
be questioned. In the relational case, that would mean includ-
ing an unchangeable default value for a at migration time (for
100% of past data) and having meaningful values for a for new
data.

It is complicated, in that case, to define a general evolution
rule.

In graph-oriented programming, we can imagine a type
T’ = T ∪ {a}, T’ being an extension of T (node types are, in
the implementation we imagine, classes), transformed by new
graph transformations (g1, g2 and g3) applicable to T’ only
(like shown in Fig. 18).
g1 composes h1 and casts T’ in T (and the same for g2).

g3 is the replacement rule for h3 and uses the new field a. In
a certain way, this design is defining a new “interface” over T,
the old one being [f1,f2f3] and the new one [g1,g2g3].

This design has a disadvantage: by construction, f3 is ap-
plicable to T’ whereas it should not be. This can be rather

53At the time this article is written, graph databases are often very soft in
attribute management and various objects can have the same type while having
different sets of attributes. This is due to the Big Data requirements to manage
partially structured data. When graph databases will propose strict schemas
for node and relationship types, it will become obvious that two nodes with
different typed attributes cannot be of the same node type.

Figure 18: Field evolution, design 1

problematic because f3 is not really “safe”, despite its topol-
ogy control.
Alternate Design 2

A way to solve this issue is to declare that T’ does not
extend T, but an instance of T can be generated from T’:
k(T’) = T’ \ {a}. g1 and g2 compose k on top of respec-
tively composing f1 and f2 (see Fig. 19).
f1, f2 and f3 are only working on node type T and cannot

take T’ anymore.
This design is relevant in the case where f1 and f2 can work

with a copy of T’ so in the case where relationships allow it.
Alternate Design 3

Another way to design would be to consider that the appli-
cation is timelined (see Fig. 20). Depending on a certain date
(Period), the graph transformations m1 and m354 are a melt-
ing between façades and factories55 that can manage both T
and T’ with the proper transformation, depending on the time.
m1 is in charge of calling f1 with T or k(T’), and m3 is in

charge of calling f3 with T and g3 with T’. Both m1 and m3
have a temporal knowledge of the evolutions of business rules
and the control of Period is belonging to the business rule
part of m1 and m3.
Do Not Miss The Initial Objective

The design of such cases should not miss the original ob-
jective that can only be determined from its business semantic
content.

For instance, in the previous sample, if the change symbol-
ized by the new attribute a is impacting heavily the software,

54We omitted, in Fig. 20, the case of f2 and g2 for clarity and because it is
the same case as for f1 and g1.

55We could also imagine that m1 returns the proper graph transformation
depending on the node type. That design is perfectly valid but m1 would not
be a graph transformation anymore, which may be relevant in that case (see
section 7.)

Page 23

The Graph-Oriented Programming Paradigm O. Rey

Figure 19: Field evolution, design 2

Figure 20: Field evolution, design 3

then, it can be useful to put previous structures and previous
graph transformations in the past. In other words, design 3
could be realized with the intention of using directly g3 in the
future (and not m3). m3 would be a graph transformation in-
voked in some past exploration part of the application, whereas
the present application would focus on T’ and g3.

If the addition of a field is just more data to the node type
T, and a default value can be easily chosen for all T instances,
and no graph transformation is querying the exhaustive list of
attributes, then we can make T evolve.

Graph-oriented programming, in that case, only brings new
possibilities. As we saw, even if fundamentally design 2 and 3
are simple, it seems mandatory to have a good modeling tool
to be able to capture those design choices, especially in big
software.

In current graph databases, it is often possible to have T’ =
T even if the list of attributes are not the same for T and T’. We
do not push for the use of those features in enterprise software,
because they may be misleading and source of code ambiguity.

6.5.3 Graph Transformations Are Not The Full Code

It is worth mentioning that graph transformations are not the
full code. Within an enterprise software, there will be many
pieces of code that will not be graph transformations. Graph
transformations should be used for business rules around busi-
ness data.

6.6 Timelined Enterprise Software
Graph-oriented programming enables to build a new generation
of applications, applications that manage differently the time,
what can be called timelined enterprise software. Depending
on the various events that occur during the maintenance and
evolution phase, there are ways to timeline properly business
rules and business data depending on the business semantics.

This is particularly adapted for applications that manage
time-sensitive business rules or regulations.

For instance, companies in the context of tax declaration, up
to a certain date, declared 45 figures corresponding to well es-
tablished rules. From the date T0, the law bounds companies
to declare a 46th figure. For the past declarations, it is of no use
to migrate old data to the new structures, knowing that business
rules applicable before T0 can still be applied for years in the
context of controls. We will fork the business rule: new rule
will manage new data structure and old rule will keep on man-
aging old data structures. The calculation can still be done in
the past in case of collection issue whereas other rules applies
for the present.

The timelined applications will evolve while only paying the
price of the new modifications. If a business rule is forked and
is only applicable to new data, it does not put at stake what
is already working inside the application and there is no use
testing it on past (adapted) data.

Graph-oriented programming appears to be a simpler pro-
gramming model than the programming models available today
in the market. It also appears as a field of opportunities in terms
of enterprise software.

Page 24

The Graph-Oriented Programming Paradigm O. Rey

6.7 Philosophical Note
Philosophically, the application is created to evolve by graph
transformation and by data timelining. Social applications are
already timeline-oriented so it will be very natural for the users
to work on timeline-oriented enterprise software.

As the data and the code are concerned, we enter the world of
inflation: if the productivity is constant with those applications
and there is no technical debt effect, the application and the
database will grow forever.

The real amount of code that will be maintained will proba-
bly not change much with time due to the design of timelined
applications. Because on the present data, present rules will be
used. In a certain way, the legacy code will keep on running on
past data but will not be a weight for present applicable rules.

We are entering into the era of “inflationist enterprise soft-
ware”. Designers will, for sure, be of crucial importance be-
cause, in a growing world, navigators need maps to find their
way home.

7 Graph-Oriented Programming Soft-
ware Architecture

The graph-oriented programming paradigm have many positive
consequences on software engineering. In this section, we will
consider several aspects of those advantages that are more or
less linked to software architecture concerns:

a) Utilities,

b) Domain-based extensions,

c) GUI considerations,

d) Time management and some other patterns.

The graph-oriented programming enables to consider differ-
ently reusable treatments and components, especially compo-
nents that will offer some sort of persistence. The fact is, with
the proper software architecture, we believe it is quite easy to
implement those components once and have them enrich all en-
terprise software.

We will introduced the need for a controller inside graph-
oriented programming enterprise applications, and we will de-
tail how this controller could take in charge the “glueing” be-
tween reusable components and business code.

Concerning patterns, we will list some of them but we are
sure that the literature will come soon with numerous other
ones. We will talk about patterns when there is not, to our point
of views, an easy way to create reusable components. Patterns
in graph-oriented programming, like patterns in object-oriented
programming, are answering to some generic design issues.

7.1 Super-type and Controller
In enterprise software (in an object-oriented world), classes are
generally representing business concepts and can be instanti-
ated in typed instances. Most of the time, they belong to a

Figure 21: Strong typing of business node types and relation-
ships

hierarchy of classes. We saw in part 4.1.5 that we did not want
to use the specialization of business classes.

However, in this section, we plead for having a root
type for business node types and a root type for busi-
ness relationship types (respectively BusinessNode and
BusinessRelationship in Fig. 21).

Having a root type for node and relationship types in the con-
text of an enterprise application eases the implementation56, for
instance:

a) The ID management can be uniform;

b) The graph library will manipulate easily cast-able in-
stances;

c) Some reusable treatments may be attached to the
manipulation of casted nodes and relationships by
BusinessNode and BusinessRelationship.

Concerning the last point, the Fig. 21 shows that we
can always display the shortDescr attribute of a node
because its type is extending BusinessNode. As the
BusinessRelationship contains sourceNodeID and
targetNodeID attributes, we can imagine a complete

56Some databases such as OrientDB already implement this feature inside
the database itself.

Page 25

The Graph-Oriented Programming Paradigm O. Rey

Figure 22: Decoration Utility: Attachment

generic graphical navigation system based on a kind of global
casted view of the database graph (see section 7.5).

The coordination of those treatments and the articulation be-
tween reusable components and business code must be done
through a kind of controller. This controller will be able to
manipulate all business nodes as BusinessNodes and busi-
ness relationships as BusinessRelationships. We will
the controller notion several times in this section to show how
the software architecture can benefit from graph-oriented pro-
gramming.

7.2 A New Vision of Utilities

As we will see in this part, reusability is much easier in graph-
oriented programming than in object-oriented programming.

In all those samples, we consider the presence of some con-
troller being able to manage several domains of business ob-
jects “from the outside”. This controller has a way to manipu-
late nodes and relationships of the business domains in an ho-
mogeneous way (see 7.1 and it manipulates some utility do-
mains proposing reusable features.

We do not claim to be exhaustive in the utilities that could be
created in a graph-oriented programming paradigm. The sam-
ples that we give are provided to demonstrate the basic mech-
anisms of graph-oriented programming and the power of the
approach.

7.2.1 Decoration Utility

The first very simple case of features that can be bought by
graph-oriented programming is the fact of attaching a utility
node type to a business node.

In the sample of Fig. 22, we propose to consider an attach-
ment node (type Attachment). It makes sense to attach doc-
uments, presentations, medias, etc., to many business nodes, to
help characterize them. Moreover, the same document or media
can be referenced by several nodes of various types.

In graph-oriented programming, in order to clarify the se-
mantics, we will create a domain (see section 4.2 for the
domain concept) with one node of type Attachment and
one relationship DOCUMENT57. The DOCUMENT relationship is
taking *ANY TYPE* as source node type and is pointing to
Attachment.

57Note that we made a semantic choice. We could have name the relationship
MEDIA or IS ATTACHED TO depending on our semantic intentions.

In this very simple example, the Attachment node will be
a leaf node58.

The important thing to notice is that adding the utility do-
main will not modify any of the programs concerning the node
type A. The glue between the two domain (double line in Fig. 22
conforming to the convention we took in Fig. 11) will be man-
aged by a controller that will be external to both domains (even
if the controller will treat differently the utility domain and the
business domain). In those conditions, nor the code represent-
ing node type A, nor the graph transformations acting on A will
be touched by (or even “aware”of) the modification. For a strict
“business code perspective”, nothing has changed by adding the
utility domain.

Due to this full decoupling, the decision of attaching attach-
ments to any business node type can be done at any moment in
the life cycle of the application. Moreover, it will cost almost
nothing (because the utility itself is very easy to implement).

We can note that this feature can be implemented once, be
packaged, and then be available afterwards for all enterprise
software that will respect the controller convention (through
some kind of plugin architecture).

If we compare that way of doing software to the way we used
to do it in the OO/RDBMS world, we can discover the huge
step ahead that we made. In object-oriented programming, we
had first to modify all classes to point to a utility class (aggre-
gation link to the Attachment class). Then, the tables had to
be modified to include the persistence of the link (new column
with document identifiers in all tables representing all business
concepts pointing to documents). In case the document had to
be deleted, the deletion had to be broadcated on all rows of all
tables that were pointing to the specific document.

In graph-oriented programming, things are much simpler:
many nodes can point to the same document and if the doc-
ument is deleted, all relationships will disappear at once. If
the controller manages this “utility” link from the “outside”
(actually by using utility graph transformations managing the
ANY TYPE characteristic of the DOCUMENT relationship),
the feature can be added:

a) For all business node types;

b) For almost no cost in the present;

c) With no technical debt generation nor coupling;

d) For all enterprise software.

Philosophically, this way of proceeding is a real game
changer because this extension capability makes a lot of util-
ities free and potentially available in all enterprise software re-
alized in graph-oriented programming approach.

By analogy with the object-oriented programming pattern,
we can name this approach “decoration utility”. We decorated
a node type with some attributes that are grouped in a new au-
tonomous and reusable node type and linked to the original
node type through a utility relationship type.

58This is for the purpose of the sample because, in a real enterprise software,
attachments are generally grouped in more complex libraries.

Page 26

The Graph-Oriented Programming Paradigm O. Rey

Figure 23: Basic View Concept

An important example of this design is the geolocation utility
(see Fig. 10). The Location node type will belong to a utility
domain that will propose services to find locations near from
another location. Adding geolocation to an existing business
domain will be easy, without coupling and free.

Considering the simplicity of implementation of those fea-
tures, their integration and maintenance costs in any enterprise
software should be null (!).

7.2.2 Views

As the decoration utility is somewhat “extending” a business
node with new attributes grouped inside a new node type and
linked through a relationship type (and forming one reusable
node type and one relationship type), the view mechanism is
working the other way round: A certain node type offers a
façade to another node type hiding some information from it.

In Fig. 23, we create a view View(B) on the B
node type. This view is accessible through a relationship
type INDIRECT ACCESS that offers another path than the
DIRECT ACCESS link. This can be a way to hide informa-
tion from the caller A. The issue here is that the View(B) and
the B node types have to be synchronized in some way.

Actually, this mechanism is very near from the “materialized
view” concept that we find in relational databases, except that
it can be done at the node level.

We can note that it is not a utility because it does not generate
reusable types, but it is more a classical pattern.

7.2.3 Shortcut Utility

A variation of the attachment node can be called the shortcut.
The concept is that, for certain reasons, the enterprise software
user would like to link two nodes together (very often the rea-
son is based on the easy navigation between two nodes which
grouping is relevant in a certain user process). The framework
will propose an utility relationship named SHORTCUT that will
enable such an unplanned linking of nodes.

The Fig. 24 shows the various domains involved in the oper-
ation.

Like in the decoration utility, this way of proceeding has no
structural impact on the code of any of the two business do-
mains involved. The utility will be managed by the controller

Figure 24: Shortcut Utility

Figure 25: Container Utilities: Folders, Favorites, Labels

that will be able to “translate” this utility relationship into an
alternate navigation capability.

This can be very powerful in the customization of the use
of the enterprise software by users. That is a fact that en-
terprise software are generally used by many different users
that are working under various processes. Instead of having to
choose what process will be implemented and what processes
cannot be implemented, enterprise software that will use graph-
oriented programming will implement the main process and let
users modify more or less extensively their user experience to
fit their own processes.

We can note that the relationship PREVIOUS in Fig. 13 is
also a sample of a particular kind of shortcut utility (restricted
to chaining JournalEntry instances).

7.2.4 Container Utility

The container utility is the exact consequence of what we have
just seen. Instead of linking together two business nodes, many
business nodes will be grouped “inside” the same container.

Semantically, a lot of business classifications are containers
even if they have different names and features:

• Folders may contain folders and business nodes,

• Favorites may be not-nestable and personal,

Page 27

The Graph-Oriented Programming Paradigm O. Rey

Figure 26: The History Facility

• Tags may be share-able between several users.

Note that we could also consider other container types
“project”, “organization unit”, “catalog”, “nomenclature”, etc.

In Fig. 25, we see samples of containers in a utility do-
main. This domain could be extended with a lot of features
(graph transformations) to manage properly the content of it.
For instance, the Folder container type could be associated
to access right management, multi-criteria classification, shar-
ing rules, archiving rules, etc. It could also be coupled with a
node type representing an attachment (like exposed in Fig. 22).

7.2.5 User History Utility

Let us consider another example: the user history (shown in
Fig. 26).

The instance diagram shown in Fig. 26 is representing one
way of recording the history of visited nodes by a user (even if
this way may not be the most efficient way).

Formally, the mechanism used is very near from the con-
tainer approach except that the relationships enable the sorting
of information in another domain: the audit one. Once again,
the audit domain could propose a large range of functionality
that are not shown here.

7.2.6 Extension Without Redesign

The development of those utility domains is independent from
the development of the business domains (like we exposed in
the multi-domain approach in section 4.2). Moreover, once
available, this utility domain can enrich all enterprise software
without any overcost nor technical debt.

The fact of being able to extend an application without being
intrusive inside the code is a bit of a revolution. Once conse-
quence is also that, depending on the controller architecture,
it is not necessary to migrate the data and to non-regress the
full application. Literally, we could say, that the graph-oriented

Figure 27: Gluing Domains Together

programming paradigm implies a capability of extending the
enterprise software without extension, data migration and non-
regression testing.

In the rest of the article, we will call that simply: extension
without redesign.

We can note that those extensions without redesign are, at the
same time, intrusive inside the core model (because they plug
into the domain) and not intrusive because they have no impact
on it.

The reason is located in the graph transformation structure:
considering they do not know more than they should and do
not assume something about the relationship they do not know,
business nodes can be linked to utilities without any functional
code to be impacted.

This is a very strange but very powerful feature of graph-
oriented programming, and it gives a quite different look on
reusability and extensibility.

7.3 Gluing Domains Together
As we saw in section 4.2, the domain notion is an abstract no-
tion. However, it can be materialize at some point by a “pack-
age” notion containing node and relationship types and graph
transformations.

As utilities are concerned, if utility services can be connected
to a business domain (for instance the domain of A in Fig. 27),
we need to examine how it can work in terms of graph transfor-
mations.

The Fig. 27 proposes a solution to this problem. The graph
transformation G will link an instance of A to an instance of
X. In order for the utility treatment to work without generating
coupling, the graph transformation G must be able to manip-
ulate A without knowing exactly its exact type59. A must be
“casted” by a super-type.

Secondly, the caller of G must provide G with a casted A.
Once again, we discover a need for a controller that would man-
age the integration of all parts together in a plugin approach,
like shown in Fig. 28.

We can note that, in Fig. 28, we show a gluing done through
a super-type that is BusinessNode. Indeed, we could

59That would mean in Java for instance without including a dependency to
the package containing A.

Page 28

The Graph-Oriented Programming Paradigm O. Rey

Figure 28: Gluing with Supertype

imagine the super-type to be much more generic and ony be
Node Type. But, we will see in the rest of the article that
an intermediate type like BusinessNode has some advan-
tages in terms of generic displays.

7.4 Domain-Based Extensions

One consequence of the multi-domain approach described in
section 4.2 is that many business domains can be integrated
inside the same application. For memory, we can associate to-
gether in a business domain:

a) Business node types,

b) Business relationship types,

c) Graph transformations (and their associated subgraphs).

Most enterprise software are covering several business do-
mains. To identify those business domains, architecture lan-
guages such as Archimate60 [17] are very useful.

Let us take an example taken from the aerospace mainte-
nance. A common aerospace maintenance information system
will cover (more of less completely) the functionality of the
following domains: aircraft configuration, maintenance tasks,
inventory, procurement, CRM61, invoicing, shipments.

For sure, all those domains will propose inward treatments
and business rules (graph transformations) and connectivity to
other domains through inter-domain relationships (see also ??
for a comparison with mathematical concepts).

The proper management of domain gluing will determine
if we generate coupling and technical debt or not. As we
saw in section 7.3, gluing of a business domain and a util-
ity domain can be done through a super-type of node types.

60Archimate is an enterprise architecture modeling language standardized by
the Open Group.

61Customer Relatonship Management.

Figure 29: Three Solutions for Gluing Business Domains

The utility considers all nodes, whatever their real type, to be
BusinessNodes.

When gluing two business domains, we need, at a certain
point, for a graph transformation of domain 1 to know about
one node type of domain 2. If we keep on with our previ-
ous example, we can take the requisition. A Task will ref-
erence Parts (in the maintenance domain) and those parts
must be provisioned. They are requisitioned in the inventory,
Requisition being a node type of the inventory domain.

Clearly, we have a functional dependency between the main-
tenance domain and the inventory domain: the maintenance do-
main “knows” a part of the inventory domain and the reciprocal
is false. Even if we don’t want to enter too much into the soft-
ware architecture issues, we can propose two ways of solving
this issue:

1. The direct gluing;

2. The indirect gluing through an “interface” domain.

7.4.1 Direct Gluing of Business Domains

The problem statement is simple: only a action in the
maintenance domain can trigger the creation of a req-
uisition (in the inventory domain). Consequently, there

Page 29

The Graph-Oriented Programming Paradigm O. Rey

will be a graph transformation of the maintenance domain
(CreateRequisitionFromTask) that will “know” how
to create the relationship CONTAINING REQUISITION and
the business node type Requisition.

The Fig. 29 is proposing in View 1 and View 2, two solutions
of direct gluing, respectively with the relationship belonging to
the source domain (maintenance), or the relationship belonging
to the target domain (inventory). In both cases, the dependency
between domains is shown in blue in the Fig. 29.

In that case, the business semantics is driving the coupling
between the two domains. Graph-oriented programming can-
not make this semantic dependency disappear.

This case is quite common in object-oriented design and it
is one of the problems the software architecture solves: what
packages should depend from one another. In graph-oriented
programming, those software architecture topics remain when
semantic dependencies cannot be avoided.

7.4.2 Indirect Gluing of Business Domains

There is however another solution to glue the two domains to-
gether and it is exposed in the View 3 of Fig. 29. The dependen-
cies are transformed into a dependency from the maintenance
domain to the requisition domain (which plays the role of an in-
terface domain) and into a dependency between the inventory
domain and the requisition domain.

In big enterprise software, those ways of interconnecting do-
mains can be quite useful because the two domains mainte-
nance and inventory may be sold separately (and so have the
obligation to run independently).

The architecture proposed in the View 3 is not always gen-
eralizable. It depends on the level of interdependency between
domains (see also a comment on that point in section ??).

To deal with those software architecture problem, we plead
for a larger usage of architecture languages such as Archimate.
Those language enable multiple views of the same problem and
a quite efficient management of dependencies.

7.5 GUI Considerations

7.5.1 Subgraph and Root Node

If we look at the way the object-oriented applications are built,
enterprise software screens show us data. Those data are, most
of the time, centered on a particular object and focus on some
connected objects and/or some lists of connected objects.

In a graph world, strictly speaking, each screen is a view on
a subgraph. Those subgraphs are quite particular because, if we
keep the same approach than in object-oriented programming,
they all have a root node (which is quite often the result of
a previous query). By root node, we mean the main concept
represented on the screen.

Any interaction that we are doing with the GUI can trigger a
graph transformation on the subgraph represented on the screen
(or a different subgraph).

When all root nodes are instances of BusinessNode, the
root nodes can be manipulated by a generic navigation that can:

a) Manipulate individual root nodes (for instance to find their
associated display);

b) Generically display lists of nodes, whatever their type, and
through the display of BusinessNode attributes.

7.5.2 About Screen Navigation

In an object-oriented programming world, screen navigation is
often hard coded inside the application, because there are struc-
tural relationships between entities both at the code level and at
the database level (see section 2.1).

In a graph world, there are no more structural relationships
on data, and with graph-oriented programming, there are no
more unnecessary coupling inside the code. That means that
any workflow defined at a certain moment is only representing
a certain “path” between nodes, but that that path may evolve
with time without any structural impact on the application.

Thus, we can see a real opportunity to build more dynamic
GUI workflows.

7.5.3 Alternate Workflows

If we consider that any screen can be associated with a root
node, we can define a screen workflow by a flow between root
nodes. For sure, root nodes may not be connected directly like
shown in Fig. 30.

The chain of root nodes is WorkReport then Mechanic,
the Task node type in between being displayed in screen 1 as
an element of the subgraph which root is WorkReport.

If we consider the Task node type, we can see in gray that
it is connected to many other types that are not displayed in
the main application graphical bean. Those nodes are both in-
coming and outgoing. All those connections could represent
pertinent navigation options.

If all nodes and relationships are instances of respectively
BusinessNode and BusinessRelationship, a frame-
work can propose those alternate navigation options by display-
ing all the relationships that are not already displayed by the
user graphical bean representing the root node (bottom zones
in screen 1). Utility links can be displayed this way.

7.5.4 About Workflows

In certain constrained processes, there is no possibility for the
user to interrupt a series of screens. The user is bound to realize
things in a particular order, in an “ordered set of successive
actions”.

In OO/RDBMS applications, it is complicated to determine
if the workflow of screen has a business meaning or of it is
the image of object aggregations and table joints. In graph-
oriented programming, as there are no more structural aggrega-
tions or joints, the navigation should be a real new experience.
Software engineers will realize that most “commonly accepted”
workflows are just the reflection of technical constraints. Real
workflows should be rarer in graph-oriented programming than
in object-oriented programming.

This approach is a real step forward in the GUI building
compared to our current way of doing software engineering.

Page 30

The Graph-Oriented Programming Paradigm O. Rey

Figure 30: GUI Opportunities For Alternate Navigations

For a long time, software architects were bound to choose the
less worst compromise in order to give satisfaction to the most
“relevant” customer workflows. This problem is one pathology
of ERP maintenance and evolutions: the ERP vendor would
like to accommodate all relevant change requests coming from
many various customers. But he cannot, because he is prisoner
in the past software design choices.

With the graph-oriented programming paradigm, this syn-
drome can cease in two dimensions:

1. Relevant workflows will be implementable at any time
whatever the state of the current software;

2. Some utilities such as the shortcut or one favor of contain-
ers will enable the customization of the user experience by
the user himself (!).

Actually, some enterprise software workflows have to be
mastered in order for the user to respect the various steps that
were defined during the software specifications. For sure, even
if graph-oriented programming enables to propose alternate
navigations for free does not mean that it is always a good
choice to let this option opened inside an enterprise software.

7.5.5 Another Way of Considering Training

Training, in enterprise software projects, is a huge part of the
costs. Before (or behind) training, we often find change man-
agement topics, including process changes for some teams to
adapt to the logic of the new software.

The generalization of utilities in the software (when it is rele-
vant) can offer an alternative to extensive process change man-
agement and training. It can enable groups of users to use dif-
ferently the same software. Many times in our project expe-
rience, we saw this need for a slightly different approach in
workflows, for certain perfectly valid business constraints, that

could not be taken into account in the project scope due to the
fact that this use of software was considered as “at the margin”.

With all those features around containers and alternate navi-
gations, end users will be able to adapt their use of the software
by themselves with fewer training or no training at all. If the
application are well designed, there should be a lot of freedom
for the user and a real improvement of the user experience. The
company intentions will not be “train everyone to the same pro-
cess” anymore but learn by doing inside the application.

Graph-oriented enterprise software will be much easier to
discover and use, and much more natural to understand be-
cause it will respect the natural semantic (evolving) links be-
tween concepts.

7.6 Another Way of Managing Time in Software

As we saw in section 2, current enterprise software often con-
sider one single code should manage every version of data
structures ever used in the application, all those versions being
migrated into the recent data schema.

We already saw in sections 6.5 and 6.6 samples of timeline
designs.

The topic of timelining enterprise software is very big and
should give birth to numerous patterns in the future, because
the problem is at the same time a very interesting design prob-
lem and one of the crucial stakes of complex software creation.
Graph-oriented programming is providing easiest ways to cre-
ate timeline software than ever before. With graph transforma-
tion evolution rules, we can imagine software that will evolve
and adjust to present data structures and business rules, letting
in the past the old business rules and data.

Even in the case of time management inside the software,
which appears to be the most complicated case, redesign of past
constraints, data migration and global non regression testing
should not be required anymore in a lot of cases.

Page 31

The Graph-Oriented Programming Paradigm O. Rey

7.7 Recommended Approach For New Graph-
Oriented Programming Enterprise Soft-
ware

For the application rewriting projects, we advise, in a first step,
to reimplement the enterprise software with the graph-oriented
programming paradigm while sticking to legacy workflows.
For sure, alternate navigation mechanisms should be available
as much as possible (see the discussion about alternate naviga-
tion in section 7.5.3).

Users will not be destabilized by the new software but they
will benefit from new ways of working. After a while, we be-
lieve that a large proportion of users will have a custom use of
the software.

Then, in a second step, the IT teams can propose new fea-
tures that require new workflows (and imply new relationship
types, see section 7.5.4). As the maintenance and evolution
will not generate technical debt anymore, all evolutions can be
added to the existing software following the rules of the graph-
oriented programming paradigm.

By using graph-oriented programming, designers will not be
bound anymore to choose what category of users will have their
processes implemented inside the software. All departments of
a company will be able to use the same software in very various
ways, the limitation being always the business semantics.

8 Conclusions
We tried, in this article, to provide a first glance at the graph-
oriented programing paradigm. We believe this programming
paradigm is a game changer and enables to create, for the first
time, in enterprise software, software that will be infinitely evo-
lutive and that encapsulate coupling in disjoints units (graph
transformations).

Many topics could be covered, such as:

1. The big advantages brought by the use of the graph-
oriented programming paradigm in a SOA62 backend ap-
plication;

2. The easy and powerful extension of a graph-oriented pro-
gramming enterprise software by Big Data techniques in-
side the same database and the many IT architecture ad-
vantages of such evolution.

The graph-oriented programming paradigm:

1. Is simpler that the object-oriented programming
paradigm;

2. Can manage a higher complexity and timelined software;

3. Is cheaper than current technology;

4. Is nearer from the business concepts and the very seman-
tics of business;

5. Is generating no technical debt;

62Service-Oriented Architecture.

6. Is fun;

7. Is filling the gap between business people and IT people;

8. Is enabling to build infinitely extensible applications with
a constant function point price through the phase of main-
tenance and evolutions;

9. Is requiring modeling.

The graph-oriented programming paradigm seems to us as
being the conclusion of the first software era, and the opening
of a new one.

For decades, since the apparition of software, software en-
gineers have searched for ways to reuse and to develop bet-
ter. And all attempts converge to graph-oriented programming:
functional programming, object-oriented programming, design
by contract, rule-based programming.

Even if those abstract preoccupations come and go be-
cause of technology hypes, financial constraints and project
time-to-market, several generations of software engineers have
searched new ways of doing software.

Graph-oriented programming is very simple, it is near from
all what exists and still, it is a revolution of the mind. With the
graph-oriented programming paradigm, we believe enterprise
software can be changed deeply.

Graph-oriented programmingwill change the maintenance
and evolutions phases. Those phases will not require anymore
redesign of past designed stuff, data migration and full non re-
gression retesting. The maintenance costs will decrease which
will enable:

a) A complete reallocation of resources in the IT depart-
ments;

b) A much better productivity of software maintenance and
evolutions;

c) A easier customization of enterprise software to any spe-
cific need;

d) A much better agility in the enterprise software systems;

e) An extension of the reusability concepts that we know to-
day because of the “extension without redesign” pattern.

Due to the graph-oriented programming paradigm, many as-
pects of the IT business could be impacted.

9 References

9.1 Software Books References
[1] D. Alur. Core J2EE Patterns. Prentice-Hall, 2nd edition,

2003.

[2] J.-P. Banâtre, S. Jones, and D. Le Métayer. Prospects
for Functional Programming in Software Engineering.
Springer-Verlag, 1991.

[3] W. Brown. Anti Patterns - Refactoring Software, Archi-
tectures And Projects In Crisis. Wiley, 1998.

Page 32

The Graph-Oriented Programming Paradigm O. Rey

[4] F. Buschmann. Pattern Oriented Software Architecture
Volume 1 - A System of Patterns. Wiley, 1996.

[5] J. Darlington. Functional Programming and its Applica-
tions, An Advanced Course. Cambridge University Press,
1st edition, 1982.

[6] H.-E. Eriksson and M. Penker. Business Modeling with
UML: Business Patterns at Work. Wiley, 2000.

[7] M. Fowler et al. Domain Specific Languages. Addison-
Wesley, 2011.

[8] E. Evans. Domain-Driven Design, Tackling Complexity
at the Heart of Software. Addison-Wesley, 2003.

[9] M. Fowler. Analysis Patterns, Reusable Object Models.
Addison-Wesley, 1996.

[10] M. Fowler. Refactoring, Improving The Design Of Exist-
ing Code. Addison-Wesley, 1999.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns, Elements Of Reusable Object Oriented Soft-
ware. Addison-Wesley, 1994.

[12] H. Glaser, C. Hankin, and D. Till. Principles of Func-
tional Programming. Prentice Hall, 1st edition, 1984.

[13] P. Graham. ANSI Common Lisp. Prentice Hall, 1996.

[14] T. Halpin. Object-Role Modeling Fundamentals: A Prac-
tical Guide to Data Modeling with ORM. Technics Publi-
cations, 2015.

[15] T. Kowalski and L. Levy. Rule-Based Programming.
Kluwer Academic Publishers, 1996.

[16] P. Kruchten. The rational unified process: an introduc-
tion. Addison-Wesley, 2nd edition, 2004.

[17] M. Lankhorst. Enterprise Architecture At Work - Mod-
elling, Communication and Analysis. Springer, 2nd edi-
tion, 2009.

[18] B. MacLennan. Functional Programming, Practice and
Theory. Addison-Wesley, 2nd edition, 1990.

[19] B. Meyer. Object-Oriented Software Construction. Pren-
tice Hall, 2nd edition, 1997.

[20] I. Robinson, J. Webber, and E. Eifrem. Graph Databases.
O’Reilly, 2nd edition, 2015.

9.2 Software Articles References
[21] Apache. Apache tinkerpop, 2016. See URL at apache.org.

[22] A. Bien. Real world java ee patterns - rethinking best
practices, 2009. See URL at java.net.

[23] W. Cunningham. The wycash portfolio management sys-
tem, 1992. See URL at c2.com.

[24] N. Brown et al. Managing technical debt in software-
reliant systems. In Proceedings of the FSE/SDP workshop
on Future of software engineering research, 2010.

[25] M. Fowler. Technical debt, 2003. See URL at martin-
fowler.com.

[26] J. Hugues. Why functional programming matters. 1990.

[27] D. Longstreet. Function Points Analysis Training Course,
2008. See URL at softwaremetrics.com.

[28] R. Martin. Java and c++ - a critical comparison. 1997.
See URL at cleancoder.com.

[29] G. Nordstrom. Metamodeling - Rapid Design and Evolu-
tion of Domain Specific Modeling Environments. Thesis,
Vanderbuilt University, May 1999.

[30] Oasis. ebxml message service specification v2-0, 2002.
See URL at ebxml.org.

[31] Object-Management-Group. Object constraint language,
2014. See URL at omg.org.

[32] Open-Group. Dce 1.1, remote procedure call, 1997. See
URL at opengroup.org.

[33] R. King R. Hull. Semantic database modeling: survey,
applications, and research issues. 1997.

[34] G.-L. Sanders and S. Shin. Denormalization effects on
performance of rdbms. In Proceedings of the 34th An-
nual Hawaii International Conference on System Sci-
ences. IEEE, 2001.

9.3 Graph Grammars References
[35] V. Claus, H. Ehrig, and G. Rozenberg. Graph-grammars

and their application to computer science and biology, 1st

International Workshop. Springer, 1978.

[36] B. Courcelle and J. Engelfriet. Graph Structure And
Monadic Second-Order Logic. Cambridge University
Press, 2011.

[37] E. Ehrig, M. Pfender, and H. J. Schneider. Graph gram-
mars, an algebraic approach. 1973.

[38] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg.
Handbook of Graph Grammars and Computing by Graph
Transformation, Applications, Languages and Tools, vol-
ume 2. World Scientific, 1999.

[39] H. Ehrig, H.J. Kreowski, and G. Rozenberg. Graph-
grammars and their application to computer science, 4th

International Workshop. Springer, 1990.

[40] H. Ehrig, M. Nagl, and G. Rozenberg. Graph-grammars
and their application to computer science, 2nd Interna-
tional Workshop. Springer, 1982.

Page 33

http://tinkerpop.apache.org/
http://download.java.net/general/podcasts/real_world_java_ee_patterns.pdf
http://c2.com/doc/oopsla92.html
http://martinfowler.com/bliki/TechnicalDebt.html
http://martinfowler.com/bliki/TechnicalDebt.html
http://www.softwaremetrics.com/Function%20Point%20Training%20Booklet%20New.pdf
http://cleancoder.com
http://www.ebxml.org/
http://www.omg.org/spec/OCL/
http://pubs.opengroup.org/onlinepubs/9629399/toc.pdf

The Graph-Oriented Programming Paradigm O. Rey

[41] H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfled.
Graph-grammars and their application to computer sci-
ence, 3rd International Workshop. Springer, 1986.

[42] U. Prange H. Ehrig, K. Ehrig and G. Taentzer. Fundamen-
tals of algebraic graph transformation. Springer, 2010.

[43] G. Rozenberg. Handbook of Graph Grammars and Com-
puting by Graph Transformation, Foundations, volume 1.
World Scientific, 1997.

9.4 Mathematics References
[44] R. Diestel. Graph theory. Springer-Verlag, 2000.

[45] J. J. McGregor. Relational consistency algorithms and
their application in finding subgraph and graph isomor-
phism. 1979.

10 Appendix A: Mathematical Consid-
erations

It is possible to interpret some of the features we mentioned
in a slightly more mathematical way. Instead of talking about
nodes, we will, in this section speak about vertices and instead
of talking about relationships, we will speak about edges [44].

10.1 Concepts Taken From Graph Theory
10.1.1 Two Kinds of Graphs

In graph-oriented programming, we have two kinds of graphs:

1. The graph model,

2. The graph of data (inside the database).

Treating each of them with mathematically inspired concepts
can be sometimes useful.

10.1.2 Not Connected Edges

In graph-oriented programming, we have to manipulate not
connected edges. Those objects are not strictly speaking “com-
plete” mathematical (or database) objects. For instance, an
edge with a source vertice and no target (or the reverse) or an
edge without any vertice attached. Those use cases are valid in
graph-oriented programming, through the graph manipulation
library. They represent intermediate state of the software.

10.1.3 Subgraphs

In mathematics, a lot of graph properties are taken in the con-
text of a full (finite) graph.

In graph-oriented programming, we have graphs that can be
very large, but programs will only work at the subgraph level.
Mathematical graph properties can be interesting but our inter-
pretation in IT will always be at the subgraph level.

10.1.4 Domains

If we look at the graph model, domains are containers linking
many model vertices (node and relationship types, graph trans-
formations). The domain can be considered as an hyperedge
linking all vertices of the domain. The graph model can be
seen an hypergraph.

Domains can also be seen as near from the concept of graph
component.

10.1.5 Connectivity

The connectivity concept is very important in graph-oriented
programming, being for utilities, domain connectivity or alter-
nate navigation.

Pivot nodes can be seen as cutvertices. Requisition is a
cutvertice in Fig. 29 view 3.

Connecting relationships are briges, for instance DOCUMENT
in Fig. 22.

10.1.6 Paths

Most of the reusable components and patterns that we spoke
about in the 7 section are creating new paths between vertices.
For instance, geolocation or containers create new paths in data,
as alternate navigation is exploiting the paths available in graph
data.

The property of graph transformations to analyze topology
to determine the applicability must be robust to the addition of
new paths in all vertices in the inbound subgraph.

The creation of new paths is a fundamental property of graph
databases: paths can be added between vertices at any time in
the life cycle of the application. Considering the code is robust
to path addition, the graph-oriented programming paradigm
proposes the better evolutivity system ever.

10.1.7 Distance Between Vertices

The path notion enables to calculate the distance between two
vertices. We can classify the reusable features and patterns
from section 7 by distance (Dist).
Decoration Utility

Considering Fig. 22:

Dist(A,Document) = 1 (1)

Views
Considering Fig. 23, with the view pattern:

Dist(A,B) = 2 (2)

Shortcut
Considering Fig. 24:

Dist(A,B) = 1 (3)

Container
Considering Fig. 25:

Dist(A,Folder) = 1 (4)

Page 34

The Graph-Oriented Programming Paradigm O. Rey

Figure 31: Distance between nodes

Dist(Favorite,B) = 1 (5)

Dist(Label, A) = 1 (6)

The interesting path however is A → Folder ← B, which
gives:

Dist(A,B) = 2 (7)

Geolocation
Considering View 2 of Fig. 10:

Dist(Aircraft, PositionAircraft) = 1 (8)

Dist(Pilot, PositionP ilot) = 1 (9)

This gives, considering Aircraft→ PositionAircraft↔
PositionP ilot← Pilot:

Dist(Aircraft, PositionP ilot) = 3 (10)

Conclusion
The notion of distance can be a quite useful indicator. Create

a path is often equivalent to go from Dist(A,B) = ∞ from
Dist(A,B) = 1, 2 or 3 (see Fig. 31).

This means that, in a graph-oriented programming enter-
prise software, every node is a “virtual neighbor” of every other
node: any change to the data can connect two nodes.

Distance can also be used to measure the optimal workflows
in the user interface. If the developed process to go from A to B
has a distance of 5, and most user create a shortcut between step
2 and step 6, to reduce the distance to 2, then we can conclude
that the software missed some important functional point.

10.2 Adherence Between Domains
The connectivity will be at the center of some questions if
we want to separate interconnected domains from a single
database. The number of connections between domains could
be a good indicator. We can define AdhM for the measure of
domain adherence in the graph model and AdhD for the calcu-
lation of domain adherence inside the data.

We can take a sample of use of AdhM . The Fig. 22 shows:

AdhM (Business, Utility) = 1 (11)

For sure, AdhD(Business, Utility) will be much larger.
This indicator can also be used to characterize the adherence

level of business domains. For instance, in Fig. 29, views 1 and
2:

AdhM (Maintenance, Inventory) = 1 (12)

Figure 32: Functional map based on AdhM

In view 3, we have:

AdhM (Maintenance, Inventory) = 0 (13)

The property (13) is very interesting because our de-
sign choice forwarded the adherence problem on the
Requisition domain but separated semantically the do-
mains Maintenance from Inventory.

This indicator can be generated from the graph-oriented
modeler and will be helpful to determine if our semantic do-
mains are correctly delimited. If we have in the model a very
high value for AdhM (A,B), it is probable that A and B are
indeed the same domain that the designer artificially split63.

We can note that we can build a graph with domains repre-
sented as vertices and adherence represented as weighted edges
(see Fig. 32). This can represent a functional and dependency
macroscopic map of the software64.

10.3 Graph Algorithms
Graph query languages [20] propose various ways of perform-
ing pattern matching inside a graph database. For enterprise
software, pattern matching is not required in most use cases be-
cause we already know what we are talking about. Very com-
monly, we have a starting root note coming from a utility (user
history, container, etc.) or the result of a search query from a
business key.

Generally speaking, algorithms are not the priority of en-
terprise software (recommendation algorithms, shortest path,
etc.). They are more used in Big Data databases for BI pur-
poses.

List of Figures
1 Case of a simple aggregation 0..1 2
2 Case of the 0..n aggregation 3
3 Evolution of the scope of an application 4
4 Evolution management in enterprise software . 6
5 Node and relationship types 9

63We have the same kind of measurement in IT architecture with Archimate
modeling language. Refer to [17].

64What we obtain should be quite near from the functional view we can get
with Archimate.

Page 35

The Graph-Oriented Programming Paradigm O. Rey

6 Node and relationship types with attributes . . . 9
7 Comparison between UML class diagram and

graph-oriented modeling structural view 9
8 Representing aggregation in graph-oriented

modeling . 10
9 Representing specialization in graph-oriented

modeling . 11
10 Typed Attributes as Node Types 12
11 Domain concept illustration and inter-domain

relationships 13
12 Instances . 14
13 Instances linked to types 14
14 The generated model view centered on a node . 16
15 Representation of graph transformation 19
16 Subgraphs as containers 20
17 Rewiring preserves unknown relationships . . . 22
18 Field evolution, design 1 23
19 Field evolution, design 2 24
20 Field evolution, design 3 24
21 Strong typing of business node types and rela-

tionships . 25
22 Decoration Utility: Attachment 26
23 Basic View Concept 27
24 Shortcut Utility 27
25 Container Utilities: Folders, Favorites, Labels . 27
26 The History Facility 28
27 Gluing Domains Together 28
28 Gluing with Supertype 29
29 Three Solutions for Gluing Business Domains . 29
30 GUI Opportunities For Alternate Navigations . 31
31 Distance between nodes 35
32 Functional map based on AdhM 35

List of Tables
1 Comparison between database types 8
2 Sample of relationship constraints table 11
3 Minimum set of requirements for a graph-

oriented implementation 16
4 Minimum set of requirements for a graph ma-

nipulation API 17
5 Pseudo code for the h graph transformation . . 22

Page 36

	1 Introduction
	1.1 A New Programming Paradigm
	1.2 Common Use Cases for Attributed Directed Graph Databases
	1.3 What is Enterprise Software?

	2 Maintenance and Evolutions in Enterprise Software
	2.1 Coupling in Enterprise Applications
	2.1.1 The Case of a Simple 0..1 Aggregation
	2.1.2 The Case of the 1..n Aggregation
	2.1.3 Large Scale Couplings

	2.2 The Necessary Scope Changes
	2.3 The Multiple Attempts of the Industry to Reduce Coupling And Accommodate Scope Changes
	2.3.1 Design Patterns
	2.3.2 Software Architecture Concerns
	2.3.3 Refactoring Methods
	2.3.4 Object To Relational Mapping
	2.3.5 Conclusion

	2.4 Time Management in Enterprise Software
	2.4.1 Current Practices
	2.4.2 Temporal Couplings
	2.4.3 Time Management Consequences

	2.5 The Cost of Coupling
	2.5.1 The ``Glue Effect''
	2.5.2 The Huge Cost of Coupling
	2.5.3 Conclusion

	3 The Attributed Directed Graph Databases, a Game Changer
	4 Introduction to Graph-Oriented Modeling
	4.1 Representing Node and Relationship Types
	4.1.1 Basic Artifacts
	4.1.2 Why Not Use the UML Class Diagram?
	4.1.3 No Structural Relationships
	4.1.4 Representing the UML Aggregation and Composition Links
	4.1.5 Representing the UML Specialization Link
	4.1.6 Comments on Relationship Type Constraints
	4.1.7 Node Types or Typed Attributes

	4.2 Introducing the Domain Concept
	4.3 Overview of Some Graph-Oriented Modeling Practices
	4.3.1 The Business Functional Analysis in UML
	4.3.2 The Progressive Abandon of UML
	4.3.3 Reintroducing Modeling
	4.3.4 About Graph-Oriented Modeling
	4.3.5 Instance-Level Modeling
	4.3.6 One Model, Multiple Views

	4.4 First Conclusion On Graph-Oriented Modeling

	5 First Implementation Aspects
	5.1 Code Representation of Graph Concepts
	5.1.1 Node And Relationship Types
	5.1.2 The Need For a Memory Graph Structure
	5.1.3 Graph Manipulation API
	5.1.4 About The Need For a Graph-Oriented Programming Language

	5.2 Software Structures Nearer From Business Concepts
	5.2.1 The Object-Oriented Business Layer
	5.2.2 No Adapters in Graph-Oriented Programming
	5.2.3 About Object-Graph Mapping

	5.3 Treatments in Graph-Oriented Programming

	6 Graph Transformations
	6.1 Introduction
	6.2 Modeling Graph Transformations
	6.2.1 Materializing Subgraphs
	6.2.2 Representation of Graph Transformations

	6.3 The Graph Transformation Code Structure
	6.3.1 The Topology Check Step
	6.3.2 The Graph Transformation Step
	6.3.3 The Rewiring Step
	6.3.4 The Rule of Evolutivity of Graph Transformations
	6.3.5 Coupling in Graph Transformation
	6.3.6 Philosophical Note

	6.4 Composing Graph Transformations
	6.4.1 Bottom-Up Programming
	6.4.2 Composition and Reusability

	6.5 Graph Transformation Evolution Rules
	6.5.1 Proposed Evolution Rules
	6.5.2 Adding a New Attribute
	6.5.3 Graph Transformations Are Not The Full Code

	6.6 Timelined Enterprise Software
	6.7 Philosophical Note

	7 Graph-Oriented Programming Software Architecture
	7.1 Super-type and Controller
	7.2 A New Vision of Utilities
	7.2.1 Decoration Utility
	7.2.2 Views
	7.2.3 Shortcut Utility
	7.2.4 Container Utility
	7.2.5 User History Utility
	7.2.6 Extension Without Redesign

	7.3 Gluing Domains Together
	7.4 Domain-Based Extensions
	7.4.1 Direct Gluing of Business Domains
	7.4.2 Indirect Gluing of Business Domains

	7.5 GUI Considerations
	7.5.1 Subgraph and Root Node
	7.5.2 About Screen Navigation
	7.5.3 Alternate Workflows
	7.5.4 About Workflows
	7.5.5 Another Way of Considering Training

	7.6 Another Way of Managing Time in Software
	7.7 Recommended Approach For New Graph-Oriented Programming Enterprise Software

	8 Conclusions
	References
	9 References
	9.1 Software Books References
	9.2 Software Articles References
	9.3 Graph Grammars References
	9.4 Mathematics References

	10 Appendix A: Mathematical Considerations
	10.1 Concepts Taken From Graph Theory
	10.1.1 Two Kinds of Graphs
	10.1.2 Not Connected Edges
	10.1.3 Subgraphs
	10.1.4 Domains
	10.1.5 Connectivity
	10.1.6 Paths
	10.1.7 Distance Between Vertices

	10.2 Adherence Between Domains
	10.3 Graph Algorithms

	List Of Figures
	List Of Tables

