Frequently Forgotten Fundamental Facts about ... https://denetria.wordpress.com/2008/10/09/fre...

Frequently Forgotten Fundamental Facts about
Software Engineering

Robert L. Glass

VEEITIAC : i . .
LA U=\ This month’s column is simply a collection of what I consider to be

facts—truths, if you will—about software engineering. I’'m presenting this software
engineering laundry list because far too many people who call themselves software engineers,
or computer scientists, or programmers, or whatever nom du jour you prefer, either aren’t
familiar with these facts or have forgotten them.

I don’t expect you to agree with all these facts; some of them might even upset you. Great!
Then we can begin a dialog about which facts really are facts and which are merely figments of
my vivid loyal opposition imagination! Enough preliminaries. Here are the most frequently
forgotten fundamental facts about software engineering. Some are of vital importance—we
forget them at considerable risk.

Complexity

C1. For every 10-percent increase in problem complexity, there is a 100-percent increase in the
software solution®s complexity. That’s not a condition to try to change (even though reducing
complexity is always desirable); that’s just the way it is. (For one explanation of why this is so,
see RD2 in the section “Requirements and design.”)

People

P1. The most important factor in attacking complexity is not the tools and techniques that
programmers use but rather the quality of the programmers themselves.

P2. Good programmers are up to 30 times better than mediocre programmers, according to
“individual differences” research. Given that their pay is never commensurate, they are the
biggest bargains in the software field.

Tools and techniques

T1. Most software tool and technique improvements account for about a 5- to 30-percent
increase in productivity and quality. But at one time or another, most of these improvements
have been claimed by someone to have “order of magnitude” (factor of 10) benefits. Hype is
the plague on the house of software.

T2. Learning a new tool or technique actually lowers programmer productivity and product
quality initially. You achieve the eventual benefit only after overcoming this learning curve.

1of4 6/6/20, 11:37 AM



Frequently Forgotten Fundamental Facts about ... https://denetria.wordpress.com/2008/10/09/fre...

T3. Therefore, adopting new tools and techniques is worthwhile, but only if you (a)
realistically view their value and (b) use patience in measuring their benefits.

Quality

Q1. Quality is a collection of attributes. Various people define those attributes differently, but a
commonly accepted collection is portability, reliability, efficiency, human engineering,
testability, understandability, and modifiability.

Q2. Quality is not the same as satisfying users, meeting requirements, or meeting cost and
schedule targets. However, all these things have an interesting relationship: User satisfaction =
quality product + meets requirements + delivered when needed + appropriate cost.

Q3. Because quality is not simply reliability, it is about much more than software defects.

Q4. Trying to improve one quality attribute often degrades another. For example, attempts to
improve efficiency often degrade modifiability.

Reliability

RE1. Error detection and removal accounts for roughly 40 percent of development costs. Thus
it is the most important phase of the development life cycle.

RE2. There are certain kinds of software errors that most programmers make frequently. These
include off-by-one indexing, definition or reference inconsistency, and omitting deep design
details. That is why, for example, N-version programming, which attempts to create multiple
diverse solutions through multiple programmers, can never completely achieve its promise.

RE3. Software that a typical programmer believes to be thoroughly tested has often had only
about 55 to 60 percent of its logic paths executed. Automated support, such as coverage
analyzers, can raise that to roughly 85 to 90 percent. Testing at the 100-percent level is nearly
impossible.

RE4. Even if 100-percent test coverage (see RE3) were possible, that criteria would be
insufficient for testing. Roughly 35 percent of software defects emerge from missing logic
paths, and another 40 percent are from the execution of a unique combination of logic paths.
They will not be caught by 100-percent coverage (100-percent coverage can, therefore,
potentially detect only about 25 percent of the errors!).

RES. There is no single best approach to software error removal. A combination of several
approaches, such as inspections and several kinds of testing and fault tolerance, is necessary.

RES. (corollary to RE5) Software will always contain residual defects, after even the most
rigorous error removal. The goal is to minimize the number and especially the severity of those
defects.

Efficiency

EF1. Efficiency is more often a matter of good design than of good coding. So, if a project
requires efficiency, efficiency must be considered early in the life cycle.

EF2. High-order language (HOL) code, with appropriate compiler optimizations, can be made
about 90 percent as efficient as the comparable assembler code. But that statement is highly
task dependent; some tasks are much harder than others to code efficiently in HOL.

EF3. There are trade-offs between size and time optimization. Often, improving one degrades

20f4 6/6/20, 11:37 AM



Frequently Forgotten Fundamental Facts about ... https://denetria.wordpress.com/2008/10/09/fre...

the other.
Maintenance

M1. Quality and maintenance have an interesting relationship (see Q3 and Q4).

M2. Maintenance typically consumes about 40 to 80 percent (60 percent average) of software
costs. Therefore, it is probably the most important life cycle phase.

Ma3. Enhancement is responsible for roughly 60 percent of software maintenance costs. Error
correction is roughly 17 percent. So, software maintenance is largely about adding new
capability to old software, not about fixing it.

M4. The previous two facts constitute what you could call the “60/60” rule of software.

Mb5. Most software development tasks and software maintenance tasks are the same—except
for the additional maintenance task of “understanding the existing product.” This task is the
dominant maintenance activity, consuming roughly 30 percent of maintenance time. So, you
could claim that maintenance is more difficult than development.

Requirements and design

RD1. One of the two most common causes of runaway projects is unstable requirements. (For
the other, see ES1.)

RD2. When a project moves from requirements to design, the solution process’s complexity
causes an explosion of “derived requirements.” The list of requirements for the design phase is
often 50 times longer than the list of original requirements.

RD3. This requirements explosion is partly why it is difficult to implement requirements
traceability (tracing the original requirements through the artifacts of the succeeding lifecycle
phases), even though everyone agrees this is desirable.

RD4. A software problem seldom has one best design solution. (Bill Curtis has said that in a
room full of expert software designers, if any two agree, that’s a majority!) That’s why, for
example, trying to provide reusable design solutions has so long resisted significant progress.

Reviews and inspections

RI1. Rigorous reviews commonly remove up to 90 percent of errors from a software product
before the first test case is run. (Many research findings support this; of course, it’s extremely
difficult to know when you’ve found 100 percent of a software product’s errors!)

RI2. Rigorous reviews are more effective, and more cost effective, than any other error-
removal strategy, including testing. But they cannot and should not replace testing (see RE5).

RI3. Rigorous reviews are extremely challenging to do well, and most organizations do not do
them, at least not for 100 percent of their software artifacts.

RI4. Post-delivery reviews are generally acknowledged to be important, both for determining
customer satisfaction and for process improvement, but most organizations do not perform
them. By the time such reviews should be held (three to 12 months after delivery), potential
review participants have generally scattered to other projects.

Reuse

3of4 6/6/20, 11:37 AM



Frequently Forgotten Fundamental Facts about ... https://denetria.wordpress.com/2008/10/09/fre...

REU1. Reuse-in-the-small (libraries of subroutines) began nearly 50 years ago and is a well-
solved problem.

REU?2. Reuse-in-the-large (components) remains largely unsolved, even though everyone
agrees it is important and desirable.

REU3. Disagreement exists about why reuse-in-the-large is unsolved, although most agree that
it is a management, not technology, problem (will, not skill). (Others say that finding
sufficiently common subproblems across programming tasks is difficult. This would make
reuse-in-the-large a problem inherent in the nature of software and the problems it solves, and
thus relatively unsolvable).

REUA4. Reuse-in-the-large works best in families of related systems, and thus is domain
dependent. This narrows its potential applicability.

REUS. Pattern reuse is one solution to the problems inherent in code reuse.
Estimation

ES1. One of the two most common causes of runaway projects is optimistic estimation. (For
the other, see RD1.)

ES2. Most software estimates are performed at the beginning of the life cycle. This makes
sense until we realize that this occurs before the requirements phase and thus before the
problem is understood. Estimation therefore usually occurs at the wrong time.

ES3. Most software estimates are made, according to several researchers, by either upper
management or marketing, not by the people who will build the software or by their managers.
Therefore, the wrong people are doing estimation.

ES4. Software estimates are rarely adjusted as the project proceeds. So, those estimates done at
the wrong time by the wrong people are usually not corrected.

ES5. Because estimates are so faulty, there is little reason to be concerned when software
projects do not meet cost or schedule targets. But everyone is concerned anyway!

ES6. In one study of a project that failed to meet its estimates, the management saw the project
as a failure, but the technical participants saw it as the most successful project they had ever
worked on! This illustrates the disconnect regarding the role of estimation, and project success,
between management and technologists. Given the previous facts, that is hardly surprising.

ES7. Pressure to achieve estimation targets is common and tends to cause programmers to skip
good software process. This constitutes an absurd result done for an absurd reason.

Research

RES1. Many software researchers advocate rather than investigate. As a result, (a) some
advocated concepts are worth less than their advocates believe and (b) there is a shortage of
evaluative research to help determine the actual value of new tools and techniques.

There, that’s my two cents’ worth of software engineering fundamental facts. What are yours?
I expect, if we can get a dialog going here, that there are a lot of similar facts that I have
forgotten—or am not aware of. I’m especially eager to hear what additional facts you can
contribute.

And, of course, I realize that some will disagree (perhaps even violently!) with some of the
facts I’ve presented. I want to hear about that as well.

4 o0f4 6/6/20, 11:37 AM



